4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Purification and Characterization of NDH-2 Protein and Elucidating Its Role in Extracellular Electron Transport and Bioelectrogenic Activity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In microbial electrochemical systems, transport of electrons from bacteria to an electrode is the key to its functioning. However, the roles of several electron transport proteins, especially the membrane-bound dehydrogenases which link cellular metabolism to EET pathway are yet to be identified. NDH-2 is a non-proton pumping NADH dehydrogenase located in the inner membrane of several bacteria like Bacillus subtilis, Escherichia coli, etc. Unlike NADH dehydrogenase I, NDH-2 is not impeded by a high proton motive force thus helping in the increase of metabolic flux and carbon utilization. In the current study, NADH dehydrogenase II protein (NDH-2) was heterologously expressed from B. subtilis into E. coli BL21 (DE3) for enhancing electron flux through EET pathway and to understand its role in bioelectrogenesis. We found that E. coli expressing NDH-2 has increased the electron flux through EET and has shown a ninefold increase in current (4.7 μA) production when compared to wild strain with empty vector (0.52 μA). Furthermore, expression of NDH-2 also resulted in increased biofilm formation which can be corroborated with the decrease in charge transfer resistance of NDH-2 strain and increased NADH oxidation. It was also found that NDH-2 strain can reduce ferric citrate at a higher rate than wild type strain suggesting increased electron flux through electron transport chain due to NADH dehydrogenase II activity. Purified NDH-2 was found to be ∼42 kDa and has FAD as a cofactor. This work demonstrates that the primary dehydrogenases like NADH dehydrogenases can be overexpressed to increase the electron flux in EET pathway which can further enhance the microbial fuel cells performance.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Microbial fuel cells: From fundamentals to applications. A review

          In the past 10–15 years, the microbial fuel cell (MFC) technology has captured the attention of the scientific community for the possibility of transforming organic waste directly into electricity through microbially catalyzed anodic, and microbial/enzymatic/abiotic cathodic electrochemical reactions. In this review, several aspects of the technology are considered. Firstly, a brief history of abiotic to biological fuel cells and subsequently, microbial fuel cells is presented. Secondly, the development of the concept of microbial fuel cell into a wider range of derivative technologies, called bioelectrochemical systems, is described introducing briefly microbial electrolysis cells, microbial desalination cells and microbial electrosynthesis cells. The focus is then shifted to electroactive biofilms and electron transfer mechanisms involved with solid electrodes. Carbonaceous and metallic anode materials are then introduced, followed by an explanation of the electro catalysis of the oxygen reduction reaction and its behavior in neutral media, from recent studies. Cathode catalysts based on carbonaceous, platinum-group metal and platinum-group-metal-free materials are presented, along with membrane materials with a view to future directions. Finally, microbial fuel cell practical implementation, through the utilization of energy output for practical applications, is described.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Engineering of a synthetic electron conduit in living cells.

            Engineering efficient, directional electronic communication between living and nonliving systems has the potential to combine the unique characteristics of both materials for advanced biotechnological applications. However, the cell membrane is designed by nature to be an insulator, restricting the flow of charged species; therefore, introducing a biocompatible pathway for transferring electrons across the membrane without disrupting the cell is a significant challenge. Here we describe a genetic strategy to move intracellular electrons to an inorganic extracellular acceptor along a molecularly defined route. To do so, we reconstitute a portion of the extracellular electron transfer chain of Shewanella oneidensis MR-1 into the model microbe Escherichia coli. This engineered E. coli can reduce metal ions and solid metal oxides ∼8× and ∼4× faster than its parental strain. We also find that metal oxide reduction is more efficient when the extracellular electron acceptor has nanoscale dimensions. This work demonstrates that a genetic cassette can create a conduit for electronic communication from living cells to inorganic materials, and it highlights the importance of matching the size scale of the protein donors to inorganic acceptors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Metabolic engineering of Escherichia coli: increase of NADH availability by overexpressing an NAD(+)-dependent formate dehydrogenase.

              Metabolic engineering studies have generally focused on manipulating enzyme levels through either the amplification, addition, or deletion of a particular pathway. However, with cofactor-dependent production systems, once the enzyme levels are no longer limiting, cofactor availability and the ratio of the reduced to oxidized form of the cofactor can become limiting. Under these situations, cofactor manipulation may become crucial in order to further increase system productivity. Although it is generally known that cofactors play a major role in the production of different fermentation products, their role has not been thoroughly and systematically studied. However, cofactor manipulations can potentially become a powerful tool for metabolic engineering. Nicotinamide adenine dinucleotide (NAD) functions as a cofactor in over 300 oxidation-reduction reactions and regulates various enzymes and genetic processes. The NADH/NAD+ cofactor pair plays a major role in microbial catabolism, in which a carbon source, such as glucose, is oxidized using NAD+ producing reducing equivalents in the form of NADH. It is crucially important for continued cell growth that NADH be oxidized to NAD+ and a redox balance be achieved. Under aerobic growth, oxygen is used as the final electron acceptor. While under anaerobic growth, and in the absence of an alternate oxidizing agent, the regeneration of NAD+ is achieved through fermentation by using NADH to reduce metabolic intermediates. Therefore, an increase in the availability of NADH is expected to have an effect on the metabolic distribution. This paper investigates a genetic means of manipulating the availability of intracellular NADH in vivo by regenerating NADH through the heterologous expression of an NAD(+)-dependent formate dehydrogenase. More specifically, it explores the effect on the metabolic patterns in Escherichia coli under anaerobic and aerobic conditions of substituting the native cofactor-independent formate dehydrogenase (FDH) by and NAD(+)-dependent FDH from Candida boidinii. The over-expression of the NAD(+)-dependent FDH doubled the maximum yield of NADH from 2 to 4 mol NADH/mol glucose consumed, increased the final cell density, and provoked a significant change in the final metabolite concentration pattern both anaerobically and aerobically. Under anaerobic conditions, the production of more reduced metabolites was favored, as evidenced by a dramatic increase in the ethanol-to-acetate ratio. Even more interesting is the observation that during aerobic growth, the increased availability of NADH induced a shift to fermentation even in the presence of oxygen by stimulating pathways that are normally inactive under these conditions.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                07 May 2019
                2019
                : 10
                : 880
                Affiliations
                Bioengineering and Environmental Sciences Laboratory, EEFF Centre, CSIR-Indian Institute of Chemical Technology , Hyderabad, India
                Author notes

                Edited by: Pascal E. Saikaly, King Abdullah University of Science and Technology, Saudi Arabia

                Reviewed by: Sunil A. Patil, Indian Institute of Science Education and Research Mohali, India; Weimin Ma, Shanghai Normal University, China

                *Correspondence: S. Venkata Mohan, vmohan_s@ 123456yahoo.com

                This article was submitted to Microbiotechnology, Ecotoxicology and Bioremediation, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2019.00880
                6513898
                31133996
                37a68fbd-6c0c-4f5c-8f23-55fdc2d2a2c4
                Copyright © 2019 Vamshi Krishna and Venkata Mohan.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 29 November 2018
                : 05 April 2019
                Page count
                Figures: 11, Tables: 1, Equations: 0, References: 34, Pages: 12, Words: 0
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                nadh dehydrogenase ii,electron flux,extracellular electron transport,bioelectricity,bioelectrochemical systems

                Comments

                Comment on this article