79
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      2-D Structure of the A Region of Xist RNA and Its Implication for PRC2 Association

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Structural analyses provide new insights into the folding of the A region of the Xist RNA, which plays a crucial role in X chromosome inactivation, and its mechanism of protein recruitment.

          Abstract

          In placental mammals, inactivation of one of the X chromosomes in female cells ensures sex chromosome dosage compensation. The 17 kb non-coding Xist RNA is crucial to this process and accumulates on the future inactive X chromosome. The most conserved Xist RNA region, the A region, contains eight or nine repeats separated by U-rich spacers. It is implicated in the recruitment of late inactivated X genes to the silencing compartment and likely in the recruitment of complex PRC2. Little is known about the structure of the A region and more generally about Xist RNA structure. Knowledge of its structure is restricted to an NMR study of a single A repeat element. Our study is the first experimental analysis of the structure of the entire A region in solution. By the use of chemical and enzymatic probes and FRET experiments, using oligonucleotides carrying fluorescent dyes, we resolved problems linked to sequence redundancies and established a 2-D structure for the A region that contains two long stem-loop structures each including four repeats. Interactions formed between repeats and between repeats and spacers stabilize these structures. Conservation of the spacer terminal sequences allows formation of such structures in all sequenced Xist RNAs. By combination of RNP affinity chromatography, immunoprecipitation assays, mass spectrometry, and Western blot analysis, we demonstrate that the A region can associate with components of the PRC2 complex in mouse ES cell nuclear extracts. Whilst a single four-repeat motif is able to associate with components of this complex, recruitment of Suz12 is clearly more efficient when the entire A region is present. Our data with their emphasis on the importance of inter-repeat pairing change fundamentally our conception of the 2-D structure of the A region of Xist RNA and support its possible implication in recruitment of the PRC2 complex.

          Author Summary

          In placental mammal females, Xist RNA is crucial for inactivation of one of the two X chromosomes in order to maintain proper X chromosome dosage. It is known that the conserved A region of Xist RNA, which contains eight or nine repeated elements, plays an essential role in this process, however, little is known about its structure and mechanism of action. By using chemical and enzymatic probes, as well as FRET experiments, we performed the first experimental analysis of the solution structure of the entire Xist A region. Both mouse and human A regions were found to form two long stem-loop structures each containing four repeats. In contrast to previous predictions, interactions take place both between repeats and between repeats and spacers. Affinity-purification of RNA-protein complexes formed by incubation of RNA in mouse ES cell nuclear extract, followed by mass spectrometry and antibody-based analyses of their protein contents, showed that the isolated 4-repeat structures from the A region can recruit components of the PRC2 complex that is needed for X chromosome inactivation. However, association of one component of this complex, Suz12, was more efficient when the entire A region was used.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: not found
          • Article: not found

          Gene action in the X-chromosome of the mouse (Mus musculus L.).

          MARY LYON (1961)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation.

            Recent investigations have implicated long antisense noncoding RNAs in the epigenetic regulation of chromosomal domains. Here we show that Kcnq1ot1 is an RNA polymerase II-encoded, 91 kb-long, moderately stable nuclear transcript and that its stability is important for bidirectional silencing of genes in the Kcnq1 domain. Kcnq1ot1 interacts with chromatin and with the H3K9- and H3K27-specific histone methyltransferases G9a and the PRC2 complex in a lineage-specific manner. This interaction correlates with the presence of extended regions of chromatin enriched with H3K9me3 and H3K27me3 in the Kcnq1 domain in placenta, whereas fetal liver lacks both chromatin interactions and heterochromatin structures. In addition, the Kcnq1 domain is more often found in contact with the nucleolar compartment in placenta than in liver. Taken together, our data describe a mechanism whereby Kcnq1ot1 establishes lineage-specific transcriptional silencing patterns through recruitment of chromatin remodeling complexes and maintenance of these patterns through subsequent cell divisions occurs via targeting the associated regions to the perinucleolar compartment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3.

              Polycomb group (PcG) proteins are important for maintaining the silenced state of homeotic genes. Biochemical and genetic studies in Drosophila and mammalian cells indicate that PcG proteins function in at least two distinct protein complexes: the ESC-E(Z) or EED-EZH2 complex, and the PRC1 complex. Recent work has shown that at least part of the silencing function of the ESC-E(Z) complex is mediated by its intrinsic activity for methylating histone H3 on lysine 27. In addition to being involved in Hox gene silencing, the complex and its associated histone methyltransferase activity are important in other biological processes including X-inactivation, germline development, stem cell pluripotency and cancer metastasis.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                plos
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                January 2010
                January 2010
                5 January 2010
                : 8
                : 1
                : e1000276
                Affiliations
                [1 ]AREMS, Nancy Université, UMR 7214 CNRS-UHP 1, Faculté des Sciences et Techniques, BP 70239, Vandoeuvre-lès-Nancy, France
                [2 ]Laboratoire de Spectrométrie de Masse BioOrganique, Institut Pluridisciplinaire Hubert Curien, Département des Sciences Analytiques, Université de Strasbourg, CNRS UMR 7178, ECPM, Strasbourg, France
                [3 ]Génétique Moléculaire Murine, CNRS2578, Institut Pasteur, Paris, France
                Washington University School of Medicine, United States of America
                Author notes

                The author(s) have made the following declarations about their contributions: Conceived and designed the experiments: SM MB VM SSC AVD PC PA AV CB. Performed the experiments: SM MB LF AS AV. Analyzed the data: SM MB LF AS VM SSC PA AV CB. Contributed reagents/materials/analysis tools: AD. Wrote the paper: SM PA AV CB.

                [¤]

                Current address: Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany

                Article
                09-PLBI-RA-3346R2
                10.1371/journal.pbio.1000276
                2796953
                20052282
                37be03b5-47b1-4244-ab15-f6b054eccb78
                Maenner et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 3 August 2009
                : 25 November 2009
                Page count
                Pages: 16
                Categories
                Research Article
                Biochemistry/RNA Structure
                Genetics and Genomics/Epigenetics
                Molecular Biology/Histone Modification

                Life sciences
                Life sciences

                Comments

                Comment on this article