30
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      How Polyomaviruses Exploit the ERAD Machinery to Cause Infection

      review-article
      1 , 2 , *
      Viruses
      MDPI
      polyomavirus, SV40, ERAD, protein aggregation, membrane penetration

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To infect cells, polyomavirus (PyV) traffics from the cell surface to the endoplasmic reticulum (ER) where it hijacks elements of the ER-associated degradation (ERAD) machinery to penetrate the ER membrane and reach the cytosol. From the cytosol, the virus transports to the nucleus, enabling transcription and replication of the viral genome that leads to lytic infection or cellular transformation. How PyV exploits the ERAD machinery to cross the ER membrane and access the cytosol, a decisive infection step, remains enigmatic. However, recent studies have slowly unraveled many aspects of this process. These emerging insights should advance our efforts to develop more effective therapies against PyV-induced human diseases.

          Related collections

          Most cited references84

          • Record: found
          • Abstract: found
          • Article: not found

          HIV enters cells via endocytosis and dynamin-dependent fusion with endosomes.

          Enveloped viruses that rely on a low pH-dependent step for entry initiate infection by fusing with acidic endosomes, whereas the entry sites for pH-independent viruses, such as HIV-1, have not been defined. These viruses have long been assumed to fuse directly with the plasma membrane. Here we used population-based measurements of the viral content delivery into the cytosol and time-resolved imaging of single viruses to demonstrate that complete HIV-1 fusion occurred in endosomes. In contrast, viral fusion with the plasma membrane did not progress beyond the lipid mixing step. HIV-1 underwent receptor-mediated internalization long before endosomal fusion, thus minimizing the surface exposure of conserved viral epitopes during fusion and reducing the efficacy of inhibitors targeting these epitopes. We also show that, strikingly, endosomal fusion is sensitive to a dynamin inhibitor, dynasore. These findings imply that HIV-1 infects cells via endocytosis and envelope glycoprotein- and dynamin-dependent fusion with intracellular compartments.
            • Record: found
            • Abstract: found
            • Article: not found

            A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol.

            Elimination of misfolded proteins from the endoplasmic reticulum (ER) by retro-translocation is an important physiological adaptation to ER stress. This process requires recognition of a substrate in the ER lumen and its subsequent movement through the membrane by the cytosolic p97 ATPase. Here we identify a p97-interacting membrane protein complex in the mammalian ER that links these two events. The central component of the complex, Derlin-1, is a homologue of Der1, a yeast protein whose inactivation prevents the elimination of misfolded luminal ER proteins. Derlin-1 associates with different substrates as they move through the membrane, and inactivation of Derlin-1 in C. elegans causes ER stress. Derlin-1 interacts with US11, a virally encoded ER protein that specifically targets MHC class I heavy chains for export from the ER, as well as with VIMP, a novel membrane protein that recruits the p97 ATPase and its cofactor.
              • Record: found
              • Abstract: found
              • Article: not found

              RNA interference screen for human genes associated with West Nile virus infection.

              West Nile virus (WNV), and related flaviviruses such as tick-borne encephalitis, Japanese encephalitis, yellow fever and dengue viruses, constitute a significant global human health problem. However, our understanding of the molecular interaction of such flaviviruses with mammalian host cells is limited. WNV encodes only 10 proteins, implying that it may use many cellular proteins for infection. WNV enters the cytoplasm through pH-dependent endocytosis, undergoes cycles of translation and replication, assembles progeny virions in association with endoplasmic reticulum, and exits along the secretory pathway. RNA interference (RNAi) presents a powerful forward genetics approach to dissect virus-host cell interactions. Here we report the identification of 305 host proteins that affect WNV infection, using a human-genome-wide RNAi screen. Functional clustering of the genes revealed a complex dependence of this virus on host cell physiology, requiring a wide variety of molecules and cellular pathways for successful infection. We further demonstrate a requirement for the ubiquitin ligase CBLL1 in WNV internalization, a post-entry role for the endoplasmic-reticulum-associated degradation pathway in viral infection, and the monocarboxylic acid transporter MCT4 as a viral replication resistance factor. By extending this study to dengue virus, we show that flaviviruses have both overlapping and unique interaction strategies with host cells. This study provides a comprehensive molecular portrait of WNV-human cell interactions that forms a model for understanding single plus-stranded RNA virus infection, and reveals potential antiviral targets.

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Viruses
                Viruses
                viruses
                Viruses
                MDPI
                1999-4915
                29 August 2016
                September 2016
                : 8
                : 9
                : 242
                Affiliations
                [1 ]Department of Microbiology and Immunology, University of Michigan Medical School, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA; adupzyk@ 123456umich.edu
                [2 ]Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, BSRB 3043, Ann Arbor, MI 48109, USA
                Author notes
                [* ]Correspondence: btsai@ 123456umich.edu ; Tel.: +1-734-764-4167
                Article
                viruses-08-00242
                10.3390/v8090242
                5035956
                27589785
                37d7c2c4-7375-43dc-9dcb-da68e7372805
                © 2016 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 20 July 2016
                : 23 August 2016
                Categories
                Review

                Microbiology & Virology
                polyomavirus,sv40,erad,protein aggregation,membrane penetration
                Microbiology & Virology
                polyomavirus, sv40, erad, protein aggregation, membrane penetration

                Comments

                Comment on this article

                Related Documents Log