16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A natural coumarin derivative esculetin offers neuroprotection on cerebral ischemia/reperfusion injury in mice : Neuroprotection of esculetin on cerebral ischemia

      , , , , , ,
      Journal of Neurochemistry
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Previous studies have demonstrated that a natural coumarin compound esculetin (Esc) possesses antioxidant, anti-tumor, and anti-inflammation activities and rescues cultured primary neurons from NMDA toxicity. In this study, we investigated the neuroprotective effects of Esc on cerebral ischemia/reperfusion (I/R) injury in a middle cerebral artery occlusion model in mice. Esc (20 μg) was administered intracerebroventricularly at 30 min before ischemia. We found that Esc significantly reduced infarct volume and decreased neurological deficit scores after 75 min of ischemia and 24 h of reperfusion. Post-treatment of Esc still provided neuroprotection even when Esc was administered after 4 h of reperfusion. Our data also indicated that intraperitoneal administration of Esc showed protective effects on cerebral I/R injury in a dose-dependent manner. We further explored the protective mechanisms of Esc on cerebral I/R injury and found that Esc decreased cleaved caspase 3 level, a marker of apoptosis. Finally, our data demonstrated that Esc exerted its anti-apoptotic activity by up-regulating the expression of Bcl-2 and down-regulating the expression of Bax, two apoptosis-related proteins. Because of its clinical use as an anticoagulant and its safety profile, Esc may have a therapeutic potential for the treatment of stroke in the future clinical trials.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Stroke research at a crossroad: asking the brain for directions.

          Ischemic stroke remains a vexing public health problem. Although progress has been made in prevention and supportive care, efforts to protect the brain from ischemic cell death have failed. Thus, no new treatment has made it from bench to bedside since tissue plasminogen activator was introduced in 1996. The brain has a remarkable capacity for self-preservation, illustrated by the protective responses induced by ischemia, preconditioning and exercise. Here we describe the mechanisms underlying brain self-protection, with the goal of identifying features that could provide insight into stroke therapy. Unlike traditional therapeutic approaches based on counteracting selected pathways of the ischemic cascade, endogenous neuroprotection relies on coordinated neurovascular programs that support cerebral perfusion, mitigate the harmful effects of cerebral ischemia and promote tissue restoration. Learning how the brain triggers and implements these protective measures may advance our quest to treat stroke.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neuroprotection for ischemic stroke: two decades of success and failure.

            Alteplase (rt-PA) is the first therapy successfully developed for acute stroke therapy. The success of rt-PA spurred development of new avenues for acute stroke management. For the last two decades, a great deal of attention has been paid to neuroprotective therapies. Initial preclinical studies demonstrated numerous drugs are effective for treating acute stroke in animal models; however, subsequent clinical trials have been frustrating, and none of the agents has proven effective. The various outcomes of preclinical and clinical trials have been the subject of much discussion. In this article, we review some key neuroprotective trials and the possible reasons for their failures. By identifying the discrepancies between preclinical studies and clinical trials, we may be able to set guidelines for future effective trials.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Synergistic protective effects of humanin and necrostatin-1 on hypoxia and ischemia/reperfusion injury.

              Since several different pathways are involved in cerebral ischemia/reperfusion injury, combination therapy rather than monotherapy may be required for efficient neuroprotection. In this study, we examined the protective effects of an apoptosis inhibitor Gly(14)-humanin (HNG) and a necroptosis inhibitor necrostatin-1 (Nec-1) on hypoxia/ischemia/reperfusion injury. Cultured mouse primary cortical neurons were incubated with Nec-1, HNG or both in a hypoxia chamber for 60 min. Cell viability was determined by MTS assay at 24h after oxygen-glucose deprivation (OGD) treatment. Mice underwent middle cerebral artery occlusion for 75 min followed by 24h reperfusion. Mice were administered HNG and/or Nec-1 (i.c.v.) at 4h after reperfusion. Neurological deficits were evaluated and the cerebral infarct volume was determined by TTC staining. Nec-1 or HNG alone had protective effects on OGD-induced cell death. Combined treatment with Nec-1 and HNG resulted in more neuroprotection than Nec-1 or HNG alone. Treatment with HNG or Nec-1 reduced cerebral infarct volume from 59.3 ± 2.6% to 47.0 ± 2.3% and 47.1 ± 1.5%, respectively. Combined treatment with HNG and Nec-1 improved neurological scores and decreased infarct volume to 38.6 ± 1.5%. In summary, we demonstrated that the combination treatment of HNG and Nec-1 conferred synergistic neuroprotection on hypoxia/ischemia/reperfusion injury in vitro and in vivo. These findings provide a novel therapeutic strategy for the treatment of stroke by combining anti-apoptosis and anti-necroptosis therapy. Copyright © 2010 Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Journal of Neurochemistry
                Wiley-Blackwell
                00223042
                June 2012
                June 08 2012
                : 121
                : 6
                : 1007-1013
                Article
                10.1111/j.1471-4159.2012.07744.x
                22458555
                37db5c72-8959-48fb-84de-2b2200ad5ff1
                © 2012

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article