8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Jacalin capped platinum nanoparticles confer persistent immunity against multiple Aeromonas infection in zebrafish

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bacterial resistance is a major clinical problem, which is compounded by both a lack of new antibiotics and emergence of multi- and extremely-drug resistant microbes. In this context, non-toxic nanoparticles could play an important role in conferring protection against bacterial infections and in this study we have made an attempt to show the usefulness of jacalin capped platinum nanoparticles in protecting zebrafish against multiple infections with Aeromonas hydrophila. Our results also indicate that use of nanoparticles promotes adaptive immune response against the pathogen, so much so that zebrafish is able to survive repetitive infection even after twenty one days of being treated with jacalin-capped platinum nanoparticles. This is significant given that platinum salt is not antibacterial and jacalin is non-immunogenic. Our study for the first time reveals a novel mechanism of action of nanoparticles, which could form an alternate antibacterial strategy with minimal bacterial resistance.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Passive antibody therapy for infectious diseases.

          Antibody-based therapies are currently undergoing a renaissance. After being developed and then largely abandoned in the twentieth century, many antibody preparations are now in clinical use. However, most of the reagents that are available target non-infectious diseases. Interest in using antibodies to treat infectious diseases is now being fuelled by the wide dissemination of drug-resistant microorganisms, the emergence of new microorganisms, the relative inefficacy of antimicrobial drugs in immunocompromised hosts and the fact that antibody-based therapies are the only means to provide immediate immunity against biological weapons. Given the need for new antimicrobial therapies and many recent technological advances in the field of immunoglobulin research, there is considerable optimism regarding renewed applications of antibody-based therapy for the prevention and treatment of infectious diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Modulating immunity as a therapy for bacterial infections.

            Despite our efforts to halt the increase and spread of antimicrobial resistance, bacteria continue to become less susceptible to antimicrobial drugs over time, and rates of discovery for new antibiotics are declining. Thus, it is essential to explore new paradigms for anti-infective therapy. One promising approach involves host-directed immunomodulatory therapies, whereby natural mechanisms in the host are exploited to enhance therapeutic benefit. The objective is to initiate or enhance protective antimicrobial immunity while limiting inflammation-induced tissue injury. A range of potential immune modulators have been proposed, including innate defence regulator peptides and agonists of innate immune components such as Toll-like receptors and NOD-like receptors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Development and maturation of the immune system in zebrafish, Danio rerio: a gene expression profiling, in situ hybridization and immunological study.

              The development and maturation of the immune system in zebrafish was investigated using immune-related gene expression profiling by quantitative real-time polymerase chain reaction, in situ hybridization (ISH), immunoglobulin (Ig) detection by immuno-affinity purification and Western blotting as well as immersion immunization experiments. Ikaros expression was first detected at 1 day post-fertilization (dpf) and thereafter increased gradually to more than two-fold between 28 and 42dpf before decreasing to less than the initial 1dpf expression level in adult fish (aged 105dpf). Recombination activating gene-1 (Rag-1) expression levels increased rapidly (by 10-fold) between 3 and 17dpf, reaching a maximum between 21 and 28dpf before decreasing gradually. However, in adult fish aged 105dpf, the expression level of Rag-1 had dropped markedly, and was equivalent to the expression level at 3dpf. T-cell receptor alpha constant region and immunoglobulin light chain constant region (IgLC) isotype-1, 2 and 3 mRNAs were detected at low levels by 3dpf and their expression levels increased steadily to the adult range between 4 and 6 weeks post-fertilization (wpf). Using tissue-section ISH, Rag-1 expression was detected in head kidney by 2wpf while IgLC-1, 2 and 3 were detected in the head kidney and the thymus by 3wpf onwards. Secreted Ig was only detectable using immuno-affinity purification and Western blotting by 4wpf. Humoral response to T-independent antigen (formalin-killed Aeromonas hydrophila) and T-dependent antigen (human gamma globulin) was observed in zebrafish immunized at 4 and 6wpf, respectively, indicating that immunocompetence was achieved. The findings reveal that the zebrafish immune system is morphologically and functionally mature by 4-6wpf.
                Bookmark

                Author and article information

                Contributors
                thiagi2007@gmail.com
                anbazhagan@scbt.sastra.edu
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                2 February 2018
                2 February 2018
                2018
                : 8
                : 2200
                Affiliations
                [1 ]ISNI 0000 0001 0369 3226, GRID grid.412423.2, School of Chemical and Biotechnology, , SASTRA University, ; Thirumalaisamudram, Thanjavur, 613401 Tamil Nadu India
                [2 ]ISNI 0000 0004 0505 215X, GRID grid.413015.2, Department of Advanced Zoology and Biotechnology, , Ramakrishna Mission Vivekananda College, ; Mylapore, Chennai 600004 India
                Author information
                http://orcid.org/0000-0002-0931-8192
                Article
                20627
                10.1038/s41598-018-20627-3
                5797147
                29396408
                37e1d949-f812-4701-b8f7-cb9be3fec894
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 9 November 2017
                : 16 January 2018
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article