5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Investigation of the Correlation between Graves’ Ophthalmopathy and CTLA4 Gene Polymorphism

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Graves’ disease (GD) is an autoimmune inflammatory disease, and Graves’ ophthalmopathy (GO) occurs in 25–50% of patients with GD. Several susceptible genes were identified to be associated with GO in some genetic analysis studies, including the immune regulatory gene CTLA4. We aimed to find out the correlation of CTLA4 gene polymorphism and GO. A total of 42 participants were enrolled in this study, consisting of 22 patients with GO and 20 healthy controls. Chi-square or Fisher’s exact test were used to appraise the association between Graves’ ophthalmopathy and CTLA4 single nucleotide polymorphisms (SNPs). All regions of CTLA4 including promoter, exon and 3’UTR were investigated. There was no nucleotide substitution in exon 2 and exon 3 of CTLA4 region, and the allele frequencies of CTLA4 polymorphisms had no significant difference between patients with GO and controls. However, the genotype frequency of “TT” genotype in rs733618 significantly differed between patients with GO and healthy controls (OR = 0.421, 95%CI: 0.290–0.611, p = 0.043), and the “CC” and “CT” genotype in rs16840252 were nearly significantly differed in genotype frequency ( p = 0.052). Haplotype analysis showed that CTLA4 Crs733618Crs16840252 might increase the risk of GO (OR = 2.375, 95%CI: 1.636–3.448, p = 0.043). In conclusion, CTLA4 Crs733618Crs16840252 was found to be a potential marker for GO, and these haplotypes would be ethnicity-specific. Clinical application of CTLA4 Crs733618Crs16840252 in predicting GO in GD patients may be beneficial.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Regulation of gene expression via the core promoter and the basal transcriptional machinery.

          The RNA polymerase II core promoter is a structurally and functionally diverse transcriptional regulatory element. There are two main strategies for transcription initiation - focused and dispersed initiation. In focused initiation, transcription starts from a single nucleotide or within a cluster of several nucleotides, whereas in dispersed initiation, there are several weak transcription start sites over a broad region of about 50 to 100 nucleotides. Focused initiation is the predominant means of transcription in simpler organisms, whereas dispersed initiation is observed in approximately two-thirds of vertebrate genes. Regulated genes tend to have focused promoters, and constitutive genes typically have dispersed promoters. Hence, in vertebrates, focused promoters are used in a small but biologically important fraction of genes. The properties of focused core promoters are dependent upon the presence or absence of sequence motifs such as the TATA box and DPE. For example, Caudal, a key regulator of the homeotic gene network, preferentially activates transcription from DPE- versus TATA-dependent promoters. The basal transcription factors, which act in conjunction with the core promoter, are another important component in the regulation of gene expression. For instance, upon differentiation of myoblasts to myotubes, the cells undergo a switch from a TFIID-based transcription system to a TRF3-TAF3-based system. These findings suggest that the core promoter and basal transcription factors are important yet mostly unexplored components in the regulation of gene expression. Copyright 2009 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            What Are 3′ UTRs Doing?

            3' untranslated regions (3' UTRs) of messenger RNAs (mRNAs) are best known to regulate mRNA-based processes, such as mRNA localization, mRNA stability, and translation. In addition, 3' UTRs can establish 3' UTR-mediated protein-protein interactions (PPIs), and thus can transmit genetic information encoded in 3' UTRs to proteins. This function has been shown to regulate diverse protein features, including protein complex formation or posttranslational modifications, but is also expected to alter protein conformations. Therefore, 3' UTR-mediated information transfer can regulate protein features that are not encoded in the amino acid sequence. This review summarizes both 3' UTR functions-the regulation of mRNA and protein-based processes-and highlights how each 3' UTR function was discovered with a focus on experimental approaches used and the concepts that were learned. This review also discusses novel approaches to study 3' UTR functions in the future by taking advantage of recent advances in technology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pathogenesis of thyroid eye disease: review and update on molecular mechanisms.

              Orbital changes in thyroid orbitopathy (TO) result from de novo adipogenesis, hyaluronan synthesis, interstitial oedema and enlargement of extraocular muscles. Cellular immunity, with predominantly CD4+ T cells expressing Th1 cytokines, and overexpression of macrophage-derived cytokines, perpetuate orbital inflammation. Orbital fibroblasts appear to be the major effector cells. Orbital fibroblasts express both thyrotropin receptor (TSHR) and insulin-like growth factor-1 receptor (IGF-1R) at higher levels than normal fibroblasts. TSHR expression increases in adipogenesis; TSHR agonism enhances hyaluronan production. IGF-1R stimulation leads to adipogenesis, hyaluronan synthesis and production of the chemokines, interleukin (IL)-16 and Regulated on Activation, Normal T Cell Expression and Secreted, which facilitate lymphocyte trafficking into the orbit. Immune activation uses a specific CD40:CD154 molecular bridge to activate orbital fibroblasts, which secrete pro-inflammatory cytokines including IL-1β, IL-1α, IL-6, IL-8, macrophage chemoattractant protein-1 and transforming growth factor-β, to perpetuate orbital inflammation. Molecular pathways including adenylyl cyclase/cyclic adenosine monophosphate, phophoinositide 3 kinase/AKT/mammalian target of rapamycin, mitogen-activated protein kinase are involved in TO. The emergence of a TO animal model and a new generation of TSHR antibody assays increasingly point towards TSHR as the primary autoantigen for extrathyroidal orbital involvement. Oxidative stress in TO resulting from imbalances of the oxidation-reduction state provides a framework of understanding for smoking prevention, achieving euthyroidism and the use of antioxidants such as selenium. Progress has been made in the understanding of the pathogenesis of TO, which should advance development of novel therapies targeting cellular immunity, specifically the CD40:CD40 ligand interaction, antibody-producing B cells, cytokines, TSHR and IGF-1R and its signalling pathways. Further studies in signalling networks and molecular triggers leading to burnout of TO will further our understanding of TO.
                Bookmark

                Author and article information

                Journal
                J Clin Med
                J Clin Med
                jcm
                Journal of Clinical Medicine
                MDPI
                2077-0383
                02 November 2019
                November 2019
                : 8
                : 11
                : 1842
                Affiliations
                [1 ]Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan; b9209011@ 123456cgmh.org.tw (Y.-H.W.); berry0908@ 123456cgmh.org.tw (W.-T.L.); s1223@ 123456adm.cgmh.org.tw (W.-T.W.)
                [2 ]Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
                [3 ]Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan 33302, Taiwan
                [4 ]Department of ophthalmology, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan; yenchang@ 123456adm.cgmh.org.tw
                [5 ]Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
                [6 ]Department of Life Science, Fu Jen University, Taipei 24205, Taiwan; 022446@ 123456mail.fju.edu.tw
                Author notes
                [* ]Correspondence: a12048@ 123456adm.cgmh.com.tw ; Tel.: +886-3328-1200 (ext. 8364)
                [†]

                These authors contributed equally to this work.

                Author information
                https://orcid.org/0000-0002-8515-7757
                Article
                jcm-08-01842
                10.3390/jcm8111842
                6912222
                31684013
                37eff750-4278-41a9-9775-53fff0d9711d
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 09 October 2019
                : 26 October 2019
                Categories
                Article

                graves’ disease,graves’ ophthalmopathy,ctla4,gene polymorphism

                Comments

                Comment on this article