1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Subclinical Hyperthyroidism: Status of the Cholesterol Transfers to HDL and Other Parameters Related to Lipoprotein Metabolism in Patients Submitted to Thyroidectomy for Thyroid Cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose: Lipid metabolism has been poorly explored in subclinical hyperthyroidism. The aim was to examine the effects of exogenous subclinical hyperthyroidism in women under levothyroxine treatment upon plasma lipids and aspects of HDL metabolism.

          Methodology: Ten women were studied in euthyroidism and again in exogenous subclinical hyperthyroidism. Thyroid function tests and plasma lipids were studied.

          Results: HDL-cholesterol (increased 21.6%, p = 0.0004), unesterified cholesterol (increased 12.3%, p = 0.04) and Lp(a) (increased 33,3%, P = 0.02) plasma concentrations were higher in subclinical hyperthyroidism compared to euthyroidism, but total cholesterol, LDL, non-HDL cholesterol, triglycerides, apo A-I, apo B were unchanged. PON1 activity (decreased 75%, p = 0.0006) was lower in subclinical hyperthyroidism. There were no changes in HDL particle size, CETP and LCAT concentrations. The in vitro assay that estimates the lipid transfers to HDL showed that esterified cholesterol (increased 7.1%, p = 0.03), unesterified cholesterol (increased 7.8%, p = 0.02) and triglycerides (increased 6.8%, p = 0.006) transfers were higher in subclinical hyperthyroidism. There were no changes in phospholipid transfers to HDL in subclinical hyperthyroidism.

          Conclusions: Several alterations in the plasma lipid metabolism were observed in the subclinical hyperthyroidism state that highlight the importance of this aspect in the follow-up of those patients. The increase in HDL-C and in the transfer of unesterified and esterified cholesterol to HDL, an important anti-atherogenic HDL function are consistently protective for cardiovascular health. The increase in Lp(a) and the decrease in PON-1 activity that are important risk factors were documented here in subclinical hyperthyroidism and these results should be confirmed in larger studies due to great data variation but should not be neglected in the follow-up of those patients.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Thyroid disease and lipids.

          The composition and the transport of lipoproteins are seriously disturbed in thyroid diseases. Overt hypothyroidism is characterized by hypercholesterolaemia and a marked increase in low-density lipoproteins (LDL) and apolipoprotein B (apo A) because of a decreased fractional clearance of LDL by a reduced number of LDL receptors in the liver. The high-density lipoprotein (HDL) levels are normal or even elevated in severe hypothyroidism because of decreased activity of cholesteryl-ester transfer protein (CETP) and hepatic lipase (HL), which are enzymes regulated by thyroid hormones. The low activity of CETP, and more specifically of HL, results in reduced transport of cholesteryl esters from HDL(2) to very low-density lipoproteins (VLDL) and intermediate low-density lipoprotein (IDL), and reduced transport of HDL(2) to HDL(3). Moreover, hypothyroidism increases the oxidation of plasma cholesterol mainly because of an altered pattern of binding and to the increased levels of cholesterol, which presents a substrate for the oxidative stress. Cardiac oxygen consumption is reduced in hypothyroidism. This reduction is associated with increased peripheral resistance and reduced contractility. Hypothyroidism is often accompanied by diastolic hypertension that, in conjunction with the dyslipidemia, may promote atherosclerosis. However, thyroxine therapy, in a thyrotropin (TSH)-suppressive dose, usually leads to a considerable improvement of the lipid profile. The changes in lipoproteins are correlated with changes in free thyroxine (FT(4)) levels. Hyperthyroidism exhibits an enhanced excretion of cholesterol and an increased turnover of LDL resulting in a decrease of total and LDL cholesterol, whereas HDL are decreased or not affected. The action of thyroid hormone on Lp(a) lipoprotein is still debated, because both decrease or no changes have been reported. The discrepancies are mostly because of genetic polymorphism of apo(a) and to the differences between the various study groups. Subclinical hypothyroidism (SH) is associated with lipid disorders that are characterized by normal or slightly elevated total cholesterol levels, increased LDL, and lower HDL. Moreover, SH has been associated with endothelium dysfunction, aortic atherosclerosis, and myocardial infarction. Lipid disorders exhibit great individual variability. Nevertheless, they might be a link, although it has not been proved, between SH and atherosclerosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Treatment with thyroid hormone.

            Thyroid hormone deficiency can have important repercussions. Treatment with thyroid hormone in replacement doses is essential in patients with hypothyroidism. In this review, we critically discuss the thyroid hormone formulations that are available and approaches to correct replacement therapy with thyroid hormone in primary and central hypothyroidism in different periods of life such as pregnancy, birth, infancy, childhood, and adolescence as well as in adult patients, the elderly, and in patients with comorbidities. Despite the frequent and long term use of l-T4, several studies have documented frequent under- and overtreatment during replacement therapy in hypothyroid patients. We assess the factors determining l-T4 requirements (sex, age, gender, menstrual status, body weight, and lean body mass), the major causes of failure to achieve optimal serum TSH levels in undertreated patients (poor patient compliance, timing of l-T4 administration, interferences with absorption, gastrointestinal diseases, and drugs), and the adverse consequences of unintentional TSH suppression in overtreated patients. Opinions differ regarding the treatment of mild thyroid hormone deficiency, and we examine the recent evidence favoring treatment of this condition. New data suggesting that combined therapy with T3 and T4 could be indicated in some patients with hypothyroidism are assessed, and the indications for TSH suppression with l-T4 in patients with euthyroid multinodular goiter and in those with differentiated thyroid cancer are reviewed. Lastly, we address the potential use of thyroid hormones or their analogs in obese patients and in severe cardiac diseases, dyslipidemia, and nonthyroidal illnesses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Lipoprotein(a): the revenant.

              In the mid-1990s, the days of lipoprotein(a) [Lp(a)] were numbered and many people would not have placed a bet on this lipid particle making it to the next century. However, genetic studies brought Lp(a) back to the front-stage after a Mendelian randomization approach used for the first time provided strong support for a causal role of high Lp(a) concentrations in cardiovascular disease and later also for aortic valve stenosis. This encouraged the use of therapeutic interventions to lower Lp(a) as well numerous drug developments, although these approaches mainly targeted LDL cholesterol, while the Lp(a)-lowering effect was only a 'side-effect'. Several drug developments did show a potent Lp(a)-lowering effect but did not make it to endpoint studies, mainly for safety reasons. Currently, three therapeutic approaches are either already in place or look highly promising: (i) lipid apheresis (specific or unspecific for Lp(a)) markedly decreases Lp(a) concentrations as well as cardiovascular endpoints; (ii) PCSK9 inhibitors which, besides lowering LDL cholesterol also decrease Lp(a) by roughly 30%; and (iii) antisense therapy targeting apolipoprotein(a) which has shown to specifically lower Lp(a) concentrations by up to 90% in phase 1 and 2 trials without influencing other lipids. Until the results of phase 3 outcome studies are available for antisense therapy, we will have to exercise patience, but with optimism since never before have we had the tools we have now to prove Koch's extrapolated postulate that lowering high Lp(a) concentrations might be protective against cardiovascular disease.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Endocrinol (Lausanne)
                Front Endocrinol (Lausanne)
                Front. Endocrinol.
                Frontiers in Endocrinology
                Frontiers Media S.A.
                1664-2392
                02 April 2020
                2020
                : 11
                : 176
                Affiliations
                [1] 1Lipid Metabolism Laboratory, Heart Institute (InCor) of the Medical School Hospital, University of São Paulo , São Paulo, Brazil
                [2] 2Clinical Cardiology Division, Heart Institute (InCor) of the Medical School Hospital, University of São Paulo , São Paulo, Brazil
                [3] 3Department of Head and Neck Surgery of the Medical School Hospital, University of São Paulo , São Paulo, Brazil
                [4] 4Department of Obstetrics and Gynecology, of the Medical School Hospital, University of São Paulo , São Paulo, Brazil
                [5] 5Faculty of Pharmaceutical Science, University of São Paulo , São Paulo, Brazil
                Author notes

                Edited by: Salman Razvi, Newcastle University, United Kingdom

                Reviewed by: Takao Ando, Nagasaki University Hospital, Japan; Madan Madhav Godbole, Sanjay Gandhi Post Graduate Institute of Medical Sciences, India

                *Correspondence: Raul C. Maranhão ramarans@ 123456usp.br

                This article was submitted to Thyroid Endocrinology, a section of the journal Frontiers in Endocrinology

                Article
                10.3389/fendo.2020.00176
                7142264
                37f813bc-8603-4718-b5b4-8bd8299b9a13
                Copyright © 2020 Sigal, Tavoni, Silva, Khalil-Filho, Brandão, Baracat and Maranhão.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 19 November 2019
                : 12 March 2020
                Page count
                Figures: 2, Tables: 2, Equations: 0, References: 23, Pages: 6, Words: 4268
                Funding
                Funded by: Fundação de Amparo à Pesquisa do Estado de São Paulo 10.13039/501100001807
                Categories
                Endocrinology
                Original Research

                Endocrinology & Diabetes
                subclinical hyperthyroidism,lipoproteins,hdl function,cholesterol ester transfer protein,lecithin-cholesterol acyltransferase,lcat,paraoxonase,pon-1

                Comments

                Comment on this article