6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Effect of Some 4,2 and 5,2 Bisthiazole Derivatives on Nitro-Oxidative Stress and Phagocytosis in Acute Experimental Inflammation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nineteen bisthiazoles were tested in order to assess their anti-inflammatory and antioxidant properties. First, we evaluated the in vitro direct antioxidant capacity of the bisthiazoles using the DPPH radical scavenging method. Then, the anti-inflammatory effect was tested in acute rat experimental inflammation by measuring the acute phase bone marrow response, the phagocytic capacity and the serum nitro-oxidative stress status. Although none of the substances showed significant direct antioxidant potential in the DPPH assay, most of them improved serum oxidative status, when administered to rats with inflammation. Four of the bisthiazoles proved to have good anti-inflammatory properties, similar or superior to that of equal doses meloxicam.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Characterization of the total free radical scavenger capacity of vegetable oils and oil fractions using 2,2-diphenyl-1-picrylhydrazyl radical.

          The total free radical scavenger capacity (RSC) of 57 edible oils from different sources was studied: olive (24 brands of oils), sunflower (6), safflower (2), rapeseed (3), soybean (3), linseed (2), corn (3), hazelnut (2), walnut (2), sesame (2), almond (2), mixture of oils for salad (2), "dietetic" oil (2), and peanut (2). Olive oils were also studied according to their geographical origins (France, Greece, Italy, Morocco, Spain, and Turkey). RSC was determined spectrophotometrically by measuring the disappearance of the radical 2,2-diphenyl-1-picrylhydrazyl radical (DPPH(*)) at 515 nm. The disappearance of the radical followed a double-exponential equation in the presence of oils and oil fractions, which suggested the presence of two (fast and slow) groups of antioxidants. RSC was studied for the methanol-soluble phase ("methanolic fraction", MF) of the oil, the fraction nonsoluble in methanol ("lipidic fraction", LF), and the nonfractionated oil ("total oil"; TF = MF + LF). Only olive, linseed, rapeseed, safflower, sesame, and walnut oils showed significant RSC in the MF due to the presence of phenolic compounds. No significant differences were found in the RSC of olive oils from different geographical origins. Upon heating at 180 degrees C the apparent constant for the disappearance of RSC (k(T)) and the half-life (t1/2) of RSC for MF, LF, and TF were calculated. The second-order rate constants (k2) for the antiradical activity of some phenolic compounds present in oils are also reported.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            EC50 estimation of antioxidant activity in DPPH· assay using several statistical programs.

            DPPH(·) assay is a reliable method to determine the antioxidant capacity of biological substrates. The DPPH(·) radical scavenging activity is generally quantified in terms of inhibition percentage of the pre-formed free radical by antioxidants, and the EC(50) (concentration required to obtain a 50% antioxidant effect) is a typically employed parameter to express the antioxidant capacity and to compare the activity of different compounds. In this study, the EC(50) estimation was performed using a comparative approach based on various regression models implemented in six specialized computer programs: GraphPad Prism® version 5.01, BLeSq, OriginPro® 8.5.1, SigmaPlot® 12, BioDataFit® 1.02, and IBM SPSS Statistics® Desktop 19.0. For this project, quercetin, catechin, ascorbic acid, caffeic acid, chlorogenic acid and acetylcysteine were screened as antioxidant standards with DPPH(·) assay to define the EC(50) parameters. All the statistical programs gave similar EC(50) values, but GraphPad Prism® five-parameter analysis pointed out a best performance, also showing a minor variance in relation to the actual EC(50).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The effect of reactive oxygen species on the synthesis of prostanoids from arachidonic acid.

              Reactive oxygen species (ROS), such as hydrogen peroxide, superoxide anion radical or hydroxyl radical, play an important role in inflammation processes as well as in transduction of signals from receptors to interleukin -1β (IL-1β), tumor necrosis factor α (TNF-α) or lipopolysaccharides (LPS). NADPH oxidase increases the ROS levels, leading to inactivation of protein phosphatase 1 (PP1), protein phosphatase 2A (PP2A) and protein tyrosine phosphatase (PTP): MAPK phosphatase 1 (MKP-1). Inactivation of phosphatases results in activation of mitogen-activated protein kinase (MAPK) cascades: c-Jun N-terminal kinase (JNK), p38 and extracellular signal-regulated kinase (Erk), which, in turn, activate cytosolic phospholipase A₂ (cPLA₂). ROS cause cytoplasmic calcium influx by activation of phospholipase C (PLC) and phosphorylation of IP₃-sensitive calcium channels. ROS activate nuclear factor κB (NF-κB) via IκB kinase (IKK) through phosphoinositide 3-kinase (PI3K), tumor suppressor phosphatase and tensin homolog (PTEN) and protein kinase B (Akt/PKB) or NF-κB-inducing kinase (NIK). IKK phosphorylates NF-κB α subunit (IκBα) at Ser³². Oxidative stress inactivates NIK and IκB kinase γ subunit/NF-κB essential modulator (IKKγ/NEMO), which might cause activation of NF-κB that is independent on IKK and inhibitor of IκBα degradation, including phosphorylation of Tyr⁴² at IκBα by c-Src and spleen tyrosine kinase (Syk), phosphorylation of the domain rich in proline, glutamic acid, serine and threonine (PEST) sequence by casein kinase II and inactivation of protein tyrosine phosphatase 1B (PTP1B). NF-κB and MAPK cascades-activated transcription factor activator protein 1 (AP-1) and CREB-binding protein (CBP/p300) lead to expression of cytosolic phospholipase A₂ (cPLA₂), cyclooxygenase-2 (COX-2) and membrane-bound prostaglandin E synthase 1 (mPGES-1), and thus to increased release of arachidonic acid and production of prostaglandins, particularly prostaglandin E₂ (PGE₂). ROS increase the activity of hematopoietic-type PGD synthase (H-PGDS), and, as a result, the production of prostaglandin D₂ (PGD₂). However, the superoxide radical reacts with nitric oxide forming peroxynitrite that inactivates prostaglandin I synthase (PGIS), suppressing the production of prostaglandin I₂ (PGI₂). ROS do not affect thromboxane synthesis in a direct manner; this is achieved by an increase in cPLA₂ activity and COX-2 expression. The aim of this review was to summarize knowledge of influence of ROS on the synthesis of prostanoids from arachidonic acid.
                Bookmark

                Author and article information

                Journal
                Molecules
                Molecules
                molecules
                Molecules
                MDPI
                1420-3049
                02 July 2014
                July 2014
                : 19
                : 7
                : 9240-9256
                Affiliations
                [1 ]Department of Therapeutic Chemistry, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 12 Ion Creanga Street, 400010 Cluj-Napoca, Romania; E-Mails: araniciu.catalin@ 123456umfcluj.ro (C.A.); mpalage@ 123456umfcluj.ro (M.D.P.); smaranda.oniga@ 123456umfcluj.ro (S.D.O.); ooniga@ 123456umfcluj.ro (O.O.)
                [2 ]Department of Physiopathology, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 2-4 Victor Babes Street, 400010 Cluj-Napoca, Romania
                [3 ]Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 12 I. Creanga Street, 400010 Cluj-Napoca, Romania; E-Mails: dbenedec@ 123456umfcluj.ro (D.B.); ioniga@ 123456umfcluj.ro (I.O.)
                Author notes
                [†]

                These authors contributed equally to this work.

                [* ]Author to whom correspondence should be addressed; E-Mail: parvualinaelena@ 123456umfcluj.ro ; Tel.: +40-747-456-848.
                Article
                molecules-19-09240
                10.3390/molecules19079240
                6271331
                24991757
                38022982-ac04-4f3f-b66a-dba9b5748635
                © 2014 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 12 May 2014
                : 24 June 2014
                : 27 June 2014
                Categories
                Article

                anti-inflammatory,nitro-oxidative stress,inos,bisthiazoles,antioxidant

                Comments

                Comment on this article