Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

Current Strategies for Brain Drug Delivery

Read this article at

Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      The blood-brain barrier (BBB) has been a great hurdle for brain drug delivery. The BBB in healthy brain is a diffusion barrier essential for protecting normal brain function by impeding most compounds from transiting from the blood to the brain; only small molecules can cross the BBB. Under certain pathological conditions of diseases such as stroke, diabetes, seizures, multiple sclerosis, Parkinson's disease and Alzheimer disease, the BBB is disrupted. The objective of this review is to provide a broad overview on current strategies for brain drug delivery and related subjects from the past five years. It is hoped that this review could inspire readers to discover possible approaches to deliver drugs into the brain. After an initial overview of the BBB structure and function in both healthy and pathological conditions, this review re-visits, according to recent publications, some questions that are controversial, such as whether nanoparticles by themselves could cross the BBB and whether drugs are specifically transferred to the brain by actively targeted nanoparticles. Current non-nanoparticle strategies are also reviewed, such as delivery of drugs through the permeable BBB under pathological conditions and using non-invasive techniques to enhance brain drug uptake. Finally, one particular area that is often neglected in brain drug delivery is the influence of aging on the BBB, which is captured in this review based on the limited studies in the literature.

      Related collections

      Most cited references 102

      • Record: found
      • Abstract: found
      • Article: not found

      The blood-brain barrier: an overview: structure, regulation, and clinical implications.

      The blood-brain barrier (BBB) is a diffusion barrier, which impedes influx of most compounds from blood to brain. Three cellular elements of the brain microvasculature compose the BBB-endothelial cells, astrocyte end-feet, and pericytes (PCs). Tight junctions (TJs), present between the cerebral endothelial cells, form a diffusion barrier, which selectively excludes most blood-borne substances from entering the brain. Astrocytic end-feet tightly ensheath the vessel wall and appear to be critical for the induction and maintenance of the TJ barrier, but astrocytes are not believed to have a barrier function in the mammalian brain. Dysfunction of the BBB, for example, impairment of the TJ seal, complicates a number of neurologic diseases including stroke and neuroinflammatory disorders. We review here the recent developments in our understanding of the BBB and the role of the BBB dysfunction in CNS disease. We have focused on intraventricular hemorrhage (IVH) in premature infants, which may involve dysfunction of the TJ seal as well as immaturity of the BBB in the germinal matrix (GM). A paucity of TJs or PCs, coupled with incomplete coverage of blood vessels by astrocyte end-feet, may account for the fragility of blood vessels in the GM of premature infants. Finally, this review describes the pathogenesis of increased BBB permeability in hypoxia-ischemia and inflammatory mechanisms involving the BBB in septic encephalopathy, HIV-induced dementia, multiple sclerosis, and Alzheimer disease.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging.

        Pericytes play a key role in the development of cerebral microcirculation. The exact role of pericytes in the neurovascular unit in the adult brain and during brain aging remains, however, elusive. Using adult viable pericyte-deficient mice, we show that pericyte loss leads to brain vascular damage by two parallel pathways: (1) reduction in brain microcirculation causing diminished brain capillary perfusion, cerebral blood flow, and cerebral blood flow responses to brain activation that ultimately mediates chronic perfusion stress and hypoxia, and (2) blood-brain barrier breakdown associated with brain accumulation of serum proteins and several vasculotoxic and/or neurotoxic macromolecules ultimately leading to secondary neuronal degenerative changes. We show that age-dependent vascular damage in pericyte-deficient mice precedes neuronal degenerative changes, learning and memory impairment, and the neuroinflammatory response. Thus, pericytes control key neurovascular functions that are necessary for proper neuronal structure and function, and pericyte loss results in a progressive age-dependent vascular-mediated neurodegeneration. Copyright © 2010 Elsevier Inc. All rights reserved.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes.

          Delivery of genes to the brain and spinal cord across the blood-brain barrier (BBB) has not yet been achieved. Here we show that adeno-associated virus (AAV) 9 injected intravenously bypasses the BBB and efficiently targets cells of the central nervous system (CNS). Injection of AAV9-GFP into neonatal mice through the facial vein results in extensive transduction of dorsal root ganglia and motor neurons throughout the spinal cord and widespread transduction of neurons throughout the brain, including the neocortex, hippocampus and cerebellum. In adult mice, tail vein injection of AAV9-GFP leads to robust transduction of astrocytes throughout the entire CNS, with limited neuronal transduction. This approach may enable the development of gene therapies for a range of neurodegenerative diseases, such as spinal muscular atrophy, through targeting of motor neurons, and amyotrophic lateral sclerosis, through targeting of astrocytes. It may also be useful for rapid postnatal genetic manipulations in basic neuroscience studies.
            Bookmark

            Author and article information

            Affiliations
            Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas, USA
            Author notes
            ✉ Corresponding author: Xiaowei Dong, Assistant Professor, Department of Pharmaceutical Sciences, School of Pharmacy, University of North Texas System, University of North Texas Health Science Center, 3500 Camp Bowie Blvd. Fort Worth, Texas 76107. Tel: +1 817 735 2785; Fax: +1 817 735 2603; Email: Xiaowei.Dong@ 123456unthsc.edu

            Competing Interests: The authors have declared that no competing interest exists.

            Journal
            Theranostics
            Theranostics
            thno
            Theranostics
            Ivyspring International Publisher (Sydney )
            1838-7640
            2018
            5 February 2018
            : 8
            : 6
            : 1481-1493
            5858162
            10.7150/thno.21254
            thnov08p1481
            © Ivyspring International Publisher

            This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license ( https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions.

            Categories
            Review

            Comments

            Comment on this article