4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Metal–organic framework derived hollow materials for electrochemical energy storage

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The recent progress and major challenges/opportunities of MOF-derived hollow materials for energy storage are summarized in this review, particularly for lithium-ion batteries, sodium-ion batteries, lithium–Se batteries, lithium–sulfur batteries and supercapacitor applications.

          Abstract

          Metal–organic frameworks (MOFs), a novel class of porous crystalline materials, have drawn enormous attention. Due to the inherent porosity and presence of both metal and organic moieties, MOF-based materials are naturally suitable as versatile precursors and sacrificial templates for a wide variety of metal/carbon-based nanostructured materials, such as metal oxides, metal carbides, metal sulfides and their composites. Recent developments in MOF-derived hollow nanostructures with well-defined interior voids and low density have revealed their extensive capabilities and thus give enhanced performance for energy storage and conversion. In this review, we summarize the recent progress in the fabrication of MOF-derived hollow materials and their applications for energy storage, particularly for lithium-ion batteries, sodium-ion batteries, lithium–Se batteries, lithium–sulfur batteries and supercapacitors. The superiorities of MOF-derived hollow materials are highlighted, and major challenges or opportunities for future research on them for electrochemical energy storage are also discussed, with prospective solutions in the light of current progress in MOF-derived hollow nanostructures.

          Related collections

          Most cited references150

          • Record: found
          • Abstract: found
          • Article: not found

          Zr-based metal-organic frameworks: design, synthesis, structure, and applications.

          Among the large family of metal-organic frameworks (MOFs), Zr-based MOFs, which exhibit rich structure types, outstanding stability, intriguing properties and functions, are foreseen as one of the most promising MOF materials for practical applications. Although this specific type of MOF is still in its early stage of development, significant progress has been made in recent years. Herein, advances in Zr-MOFs since 2008 are summarized and reviewed from three aspects: design and synthesis, structure, and applications. Four synthesis strategies implemented in building and/or modifying Zr-MOFs as well as their scale-up preparation under green and industrially feasible conditions are illustrated first. Zr-MOFs with various structural types are then classified and discussed in terms of different Zr-based secondary building units and organic ligands. Finally, applications of Zr-MOFs in catalysis, molecule adsorption and separation, drug delivery, and fluorescence sensing, and as porous carriers are highlighted. Such a review based on a specific type of MOF is expected to provide guidance for the in-depth investigation of MOFs towards practical applications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The emerging chemistry of sodium ion batteries for electrochemical energy storage.

            Energy storage technology has received significant attention for portable electronic devices, electric vehicle propulsion, bulk electricity storage at power stations, and load leveling of renewable sources, such as solar energy and wind power. Lithium ion batteries have dominated most of the first two applications. For the last two cases, however, moving beyond lithium batteries to the element that lies below-sodium-is a sensible step that offers sustainability and cost-effectiveness. This requires an evaluation of the science underpinning these devices, including the discovery of new materials, their electrochemistry, and an increased understanding of ion mobility based on computational methods. The Review considers some of the current scientific issues underpinning sodium ion batteries.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Metal–organic frameworks for energy storage: Batteries and supercapacitors

                Bookmark

                Author and article information

                Journal
                JMCAET
                Journal of Materials Chemistry A
                J. Mater. Chem. A
                Royal Society of Chemistry (RSC)
                2050-7488
                2050-7496
                2018
                2018
                : 6
                : 16
                : 6754-6771
                Affiliations
                [1 ]College of Chemistry and Chemical Engineering
                [2 ]Xinyang Normal University
                [3 ]Xinyang 464000
                [4 ]China
                [5 ]College of Physics and Electronic Engineering
                Article
                10.1039/C8TA00612A
                3807588b-5e2c-4c77-9391-f1bbd5250e75
                © 2018

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article