8
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dietary factors and low-grade inflammation in relation to overweight and obesity revisted

      article-commentary
      1 , 2
      The British Journal of Nutrition
      Cambridge University Press

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In 2011, the British Journal of Nutrition published the output of the work of an expert group assembled by the European Branch of the International Life Sciences Institute (ILSI Europe) with the aim of exploring the role of low-grade inflammation in overweight and obesity and identifying the potential of dietary exposures to modify that process(1). The abstract of that publication is shown in Fig. 1. According to Web of Science, the paper has now been cited 561 times, being the second most cited paper published in the British Journal of Nutrition in 2011 and the 21st most cited of all papers ever published in the journal. Citations of the paper have been sustained over time, being between 43 and 64 per year over the period 2013 to 2019. Remarkably, the highest number of citations was received in 2020 and 2021 with 68 and 84 citations, respectively. The pattern of citations suggests a continued relevance of the paper, and the higher number in the last two years undoubtedly reflects the recognition of the contributions of both inflammation and overweight and obesity to poor outcome from coronavirus disease discovered in 2019 (COVID-19). This paper built on the activity of an earlier ILSI Europe expert group that considered biomarkers of inflammatory processes in different physiological and pathological states(2) and related to later expert group activities that gave a deeper consideration to biomarkers of inflammation that might be used in the substantiation of health clams(3) and to the role of low-grade inflammation in ageing and the potential of dietary exposures to modify that process(4). Those papers are also fairly well cited with 204, 196 and 180 Web of Science citations, respectively, reflecting the enduring interest in inflammation as it relates to diet and nutrition and to different states and stages of human physiology. Fig. 1. Abstract of Calder et al. (1) Inflammation is a component of innate immune responses and, as such, is a normal mechanism involved in host defence against pathogenic organisms and other insults. Physiologically, inflammatory responses are self-regulating. Loss of such self-regulation is linked with many pathological states, where the on-going unregulated inflammatory responses cause damage to host tissues. The diseases that result involve activated inflammatory cells and excessive inflammatory mediator production at the site of tissue damage with elevated concentrations of markers of inflammation in the systemic circulation. The latter markers include acute phase proteins, such as C-reactive protein, and cytokines such as TNF and IL-6. Examples of such diseases include rheumatoid arthritis and the inflammatory bowel diseases. The impacts of these diseases are controlled, with varying degrees of success, with anti-inflammatory pharmaceutical agents. In the 1990s, it was discovered that adipose tissue can produce inflammatory cytokines(5,6), and in the first decade of the 2000s, there were many reports that the circulating concentrations of inflammatory markers, including C-reactive protein, TNF and IL-6, are higher in individuals living with obesity than in age-and sex-matched healthy weight controls (e.g.(7–9)). This state of enhanced inflammation could link obesity with its co-morbidities like type-2 diabetes, metabolic fatty liver disease and CHD, in part because the inflammatory mediators could have secondary effects at other sites (e.g. the liver or the blood vessel wall) and in part because inflammation induces insulin resistance. The concentrations of inflammatory markers observed in those with obesity, though higher than in controls, were much lower than observed in individuals with frank inflammatory diseases. Hence, obesity came to be recognised as a state of low-grade inflammation, a term that has only been widely used in the last two decades (the oldest paper identified in a PubMed search using ‘Adipose tissue AND Low grade inflammation’ was published in 1999(10) and this is the third oldest paper identified in a search using ‘Obesity AND Low grade inflammation’). Therefore, at the time of the work of the ILSI Europe expert group that was published in 2011, the broad recognition that obesity and inflammation are somehow linked was fairly new. In parallel with research on inflammation in obesity, was the research on the influence of many foods and nutrients on inflammatory processes, with some foods and nutrients apparently increasing inflammation and others dampening it. It had also been discovered that the gut microbiota appears to be altered in obesity(11). Given that diet is a major determinant of the gut microbiota(12) and that the gut microbiota may have a role in regulating inflammation(13), there seem to be multiple axes of interaction between nutrition, the gut microbiota, adipose tissue and inflammation. The ILSI Europe expert group set out to collate and review the evidence around obesity being a state of low-grade inflammation and the evidence for various diets and dietary components being modulators of inflammation. The paper begins with a discussion of the concept of low-grade inflammation and provides copious evidence from human research that obesity is a state of low-grade inflammation, based mainly on measurements made in blood. It goes on to describe adipose tissue as a source of inflammatory mediators, explains how both adipocytes and infiltrating inflammatory cells from blood (especially monocyte-derived macrophages) are sources of these and that the inflammatory milieu of the adipose tissue influences macrophage differentiation into phenotypes that are more or less inflammatory in nature. The evidence that visceral adipose tissue is ‘more inflammatory’ than subcutaneous is described and then the role of inflammation in modulating insulin signalling and insulin sensitivity is reviewed. The paper then moves on to nutritional aspects. The phenomenon of post-prandial inflammation is described: both high simple sugar and high fat meals induce a state of elevated inflammation in the hours following their consumption, and there is a view that this is part of the link between poor quality diets and increased risk of non-communicable diseases(14). Inclusion of fibre, some plant polyphenolic compounds or n-3 fatty acids, amongst others, in the meal can partly mitigate its effects on inflammation. The paper goes on to review the effects of different eating patterns, whole foods and beverages, glycated end products, fatty acids, carbohydrates, milk peptides, vitamin D, antioxidant vitamins (C and E and carotenoids), flavonoids and phytoestrogens on inflammatory markers as reported in human studies, although often not in those with obesity. Finally, the paper descries the impact of an altered gut microbiota on inflammatory makers and the effects of pre and probiotics. As such, the paper provides a comprehensive overview of adipose tissue, obesity and inflammation and of nutrition and inflammation and attempts to integrate these. In this respect, the paper was unique at the time of its publication. This probably explains its sustained high level of citations over the 10 years since its publication. However, as noted earlier, citations have gone up during the period of the COVID-19 pandemic. Outcomes from COVID-19 are worse in those with higher inflammation(15,16), are worse in those living with obesity(17,18) and may be worse in those with poor nutrition(19,20). Because the paper by Calder et al.(1) brings obesity, inflammation and nutrition together, it remains an attractive paper to cite by those publishing about COVID-19. In the ten years since the publication by Calder et al.(1), research in the area of adipose tissue, obesity and inflammation has increased significantly (Table 1). Much more is known about inflammation within human adipose tissue including that visceral adipose tissue has a higher state of inflammation than subcutaneous(21) and that infiltrating cells other than macrophages, and including dendritic cells, T cells and B cells, make important contributions to adipose tissue inflammation(22). There are interesting studies reporting altered concentrations of recently discovered n-3 fatty acid-derived lipid mediators that act to resolve (‘turn off’) inflammation in human adipose tissue(23), suggesting a nutritional strategy that could reduce adipose tissue inflammation with the aim of mitigating some of the co-morbidities associated with obesity. Earlier studies reported that n-3 fatty acids (EPA + DHA) could decrease macrophage numbers, crown-like structures and expression of some inflammatory genes in human subcutaneous adipose tissue(24,25) and could increase concentrations of pro-resolving lipid mediators mainly in visceral adipose tissue(25). A more recent study reported that n-3 fatty acids could alter endocannabinoid and other lipid mediator concentrations and gene expression in human subcutaneous adipose tissue but that adipose tissue from those living with obesity showed less profound changes than that from healthy weight individuals(26,27). This study has raised questions about better targeting of adipose tissue in those living with obesity. Against this background of advances in our understanding of adipose tissue biology, of obesity as a state of low-grade inflammation and of nutritional strategies to reduce the inflammatory state of adipose tissue, the paper by Calder et al.(1) will remain relevant for some time and seems likely to continue to be cited. Table 1. Numbers of publications identified in PubMed using different search terms. Searches conducted 27 February 2022 Search terms used Years covered Obesity AND inflammation Adipose tissue AND inflammation Obesity AND low-grade inflammation Adipose tissue AND low-grade inflammation 1980–1989 65 89 1 0 1990–1999 159 190 3 1 2000–2009 3961 1892 473 232 2010–2019 19 801 9940 2301 1156 2020-now 7433 3272 809 334

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study

          Summary Background Since December, 2019, Wuhan, China, has experienced an outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Epidemiological and clinical characteristics of patients with COVID-19 have been reported but risk factors for mortality and a detailed clinical course of illness, including viral shedding, have not been well described. Methods In this retrospective, multicentre cohort study, we included all adult inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Jinyintan Hospital and Wuhan Pulmonary Hospital (Wuhan, China) who had been discharged or had died by Jan 31, 2020. Demographic, clinical, treatment, and laboratory data, including serial samples for viral RNA detection, were extracted from electronic medical records and compared between survivors and non-survivors. We used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death. Findings 191 patients (135 from Jinyintan Hospital and 56 from Wuhan Pulmonary Hospital) were included in this study, of whom 137 were discharged and 54 died in hospital. 91 (48%) patients had a comorbidity, with hypertension being the most common (58 [30%] patients), followed by diabetes (36 [19%] patients) and coronary heart disease (15 [8%] patients). Multivariable regression showed increasing odds of in-hospital death associated with older age (odds ratio 1·10, 95% CI 1·03–1·17, per year increase; p=0·0043), higher Sequential Organ Failure Assessment (SOFA) score (5·65, 2·61–12·23; p<0·0001), and d-dimer greater than 1 μg/mL (18·42, 2·64–128·55; p=0·0033) on admission. Median duration of viral shedding was 20·0 days (IQR 17·0–24·0) in survivors, but SARS-CoV-2 was detectable until death in non-survivors. The longest observed duration of viral shedding in survivors was 37 days. Interpretation The potential risk factors of older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage. Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future. Funding Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences; National Science Grant for Distinguished Young Scholars; National Key Research and Development Program of China; The Beijing Science and Technology Project; and Major Projects of National Science and Technology on New Drug Creation and Development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China

            Dear Editor, The rapid emergence of COVID-19 in Wuhan city, Hubei Province, China, has resulted in thousands of deaths [1]. Many infected patients, however, presented mild flu-like symptoms and quickly recover [2]. To effectively prioritize resources for patients with the highest risk, we identified clinical predictors of mild and severe patient outcomes. Using the database of Jin Yin-tan Hospital and Tongji Hospital, we conducted a retrospective multicenter study of 68 death cases (68/150, 45%) and 82 discharged cases (82/150, 55%) with laboratory-confirmed infection of SARS-CoV-2. Patients met the discharge criteria if they had no fever for at least 3 days, significantly improved respiratory function, and had negative SARS-CoV-2 laboratory test results twice in succession. Case data included demographics, clinical characteristics, laboratory results, treatment options and outcomes. For statistical analysis, we represented continuous measurements as means (SDs) or as medians (IQRs) which compared with Student’s t test or the Mann–Whitney–Wilcoxon test. Categorical variables were expressed as numbers (%) and compared by the χ 2 test or Fisher’s exact test. The distribution of the enrolled patients’ age is shown in Fig. 1a. There was a significant difference in age between the death group and the discharge group (p < 0.001) but no difference in the sex ratio (p = 0.43). A total of 63% (43/68) of patients in the death group and 41% (34/82) in the discharge group had underlying diseases (p = 0.0069). It should be noted that patients with cardiovascular diseases have a significantly increased risk of death when they are infected with SARS-CoV-2 (p < 0.001). A total of 16% (11/68) of the patients in the death group had secondary infections, and 1% (1/82) of the patients in the discharge group had secondary infections (p = 0.0018). Laboratory results showed that there were significant differences in white blood cell counts, absolute values of lymphocytes, platelets, albumin, total bilirubin, blood urea nitrogen, blood creatinine, myoglobin, cardiac troponin, C-reactive protein (CRP) and interleukin-6 (IL-6) between the two groups (Fig. 1b and Supplementary Table 1). Fig. 1 a Age distribution of patients with confirmed COVID-19; b key laboratory parameters for the outcomes of patients with confirmed COVID-19; c interval from onset of symptom to death of patients with confirmed COVID-19; d summary of the cause of death of 68 died patients with confirmed COVID-19 The survival times of the enrolled patients in the death group were analyzed. The distribution of survival time from disease onset to death showed two peaks, with the first one at approximately 14 days (22 cases) and the second one at approximately 22 days (17 cases) (Fig. 1c). An analysis of the cause of death was performed. Among the 68 fatal cases, 36 patients (53%) died of respiratory failure, five patients (7%) with myocardial damage died of circulatory failure, 22 patients (33%) died of both, and five remaining died of an unknown cause (Fig. 1d). Based on the analysis of the clinical data, we confirmed that some patients died of fulminant myocarditis. In this study, we first reported that the infection of SARS-CoV-2 may cause fulminant myocarditis. Given that fulminant myocarditis is characterized by a rapid progress and a severe state of illness [3], our results should alert physicians to pay attention not only to the symptoms of respiratory dysfunction but also the symptoms of cardiac injury. Further, large-scale studies and the studies on autopsy are needed to confirm our analysis. In conclusion, predictors of a fatal outcome in COVID-19 cases included age, the presence of underlying diseases, the presence of secondary infection and elevated inflammatory indicators in the blood. The results obtained from this study also suggest that COVID-19 mortality might be due to virus-activated “cytokine storm syndrome” or fulminant myocarditis. Electronic supplementary material Below is the link to the electronic supplementary material. Supplementary material 1 (DOCX 38 kb)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Influence of diet on the gut microbiome and implications for human health

              Recent studies have suggested that the intestinal microbiome plays an important role in modulating risk of several chronic diseases, including inflammatory bowel disease, obesity, type 2 diabetes, cardiovascular disease, and cancer. At the same time, it is now understood that diet plays a significant role in shaping the microbiome, with experiments showing that dietary alterations can induce large, temporary microbial shifts within 24 h. Given this association, there may be significant therapeutic utility in altering microbial composition through diet. This review systematically evaluates current data regarding the effects of several common dietary components on intestinal microbiota. We show that consumption of particular types of food produces predictable shifts in existing host bacterial genera. Furthermore, the identity of these bacteria affects host immune and metabolic parameters, with broad implications for human health. Familiarity with these associations will be of tremendous use to the practitioner as well as the patient.
                Bookmark

                Author and article information

                Journal
                Br J Nutr
                Br J Nutr
                BJN
                The British Journal of Nutrition
                Cambridge University Press (Cambridge, UK )
                0007-1145
                1475-2662
                28 May 2022
                09 March 2022
                : 127
                : 10
                : 1455-1457
                Affiliations
                [1 ]School of Human Development and Health, Faculty of Medicine, University of Southampton , Southampton, UK email pcc@ 123456soton.ac.uk
                [2 ]NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton , Southampton, UK
                Author information
                https://orcid.org/0000-0002-6038-710X
                Article
                S0007114522000782
                10.1017/S0007114522000782
                9044216
                35260214
                381512aa-8e4d-4403-aaf5-69e89252f0e1
                © The Author(s) 2022

                This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.

                History
                : 27 February 2022
                : 01 March 2022
                Page count
                Figures: 1, Tables: 1, References: 27, Pages: 3
                Categories
                Invited Commentary
                Nutritional Immunology

                Nutrition & Dietetics
                Nutrition & Dietetics

                Comments

                Comment on this article