16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      PDB-UF: database of predicted enzymatic functions for unannotated protein structures from structural genomics

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The number of protein structures from structural genomics centers dramatically increases in the Protein Data Bank (PDB). Many of these structures are functionally unannotated because they have no sequence similarity to proteins of known function. However, it is possible to successfully infer function using only structural similarity.

          Results

          Here we present the PDB-UF database, a web-accessible collection of predictions of enzymatic properties using structure-function relationship. The assignments were conducted for three-dimensional protein structures of unknown function that come from structural genomics initiatives. We show that 4 hypothetical proteins (with PDB accession codes: 1VH0, 1NS5, 1O6D, and 1TO0), for which standard BLAST tools such as PSI-BLAST or RPS-BLAST failed to assign any function, are probably methyltransferase enzymes.

          Conclusion

          We suggest that the structure-based prediction of an EC number should be conducted having the different similarity score cutoff for different protein folds. Moreover, performing the annotation using two different algorithms can reduce the rate of false positive assignments. We believe, that the presented web-based repository will help to decrease the number of protein structures that have functions marked as "unknown" in the PDB file.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Protein Data Bank (PDB): database of three-dimensional structural information of biological macromolecules.

          The Protein Data Bank (PDB) at Brookhaven National Laboratory, is a database containing experimentally determined three-dimensional structures of proteins, nucleic acids and other biological macromolecules, with approximately 8000 entries. Data are easily submitted via PDB's WWW-based tool AutoDep, in either mmCIF or PDB format, and are most conveniently examined via PDB's WWW-based tool 3DB Browser.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evolution of function in protein superfamilies, from a structural perspective.

            The recent growth in protein databases has revealed the functional diversity of many protein superfamilies. We have assessed the functional variation of homologous enzyme superfamilies containing two or more enzymes, as defined by the CATH protein structure classification, by way of the Enzyme Commission (EC) scheme. Combining sequence and structure information to identify relatives, the majority of superfamilies display variation in enzyme function, with 25 % of superfamilies in the PDB having members of different enzyme types. We determined the extent of functional similarity at different levels of sequence identity for 486,000 homologous pairs (enzyme/enzyme and enzyme/non-enzyme), with structural and sequence relatives included. For single and multi-domain proteins, variation in EC number is rare above 40 % sequence identity, and above 30 %, the first three digits may be predicted with an accuracy of at least 90 %. For more distantly related proteins sharing less than 30 % sequence identity, functional variation is significant, and below this threshold, structural data are essential for understanding the molecular basis of observed functional differences. To explore the mechanisms for generating functional diversity during evolution, we have studied in detail 31 diverse structural enzyme superfamilies for which structural data are available. A large number of variations and peculiarities are observed, at the atomic level through to gross structural rearrangements. Almost all superfamilies exhibit functional diversity generated by local sequence variation and domain shuffling. Commonly, substrate specificity is diverse across a superfamily, whilst the reaction chemistry is maintained. In many superfamilies, the position of catalytic residues may vary despite playing equivalent functional roles in related proteins. The implications of functional diversity within supefamilies for the structural genomics projects are discussed. More detailed information on these superfamilies is available at http://www.biochem.ucl.ac.uk/bsm/FAM-EC/. Copyright 2001 Academic Press.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              ProFunc: a server for predicting protein function from 3D structure

              ProFunc () is a web server for predicting the likely function of proteins whose 3D structure is known but whose function is not. Users submit the coordinates of their structure to the server in PDB format. ProFunc makes use of both existing and novel methods to analyse the protein's sequence and structure identifying functional motifs or close relationships to functionally characterized proteins. A summary of the analyses provides an at-a-glance view of what each of the different methods has found. More detailed results are available on separate pages. Often where one method has failed to find anything useful another may be more forthcoming. The server is likely to be of most use in structural genomics where a large proportion of the proteins whose structures are solved are of hypothetical proteins of unknown function. However, it may also find use in a comparative analysis of members of large protein families. It provides a convenient compendium of sequence and structural information that often hold vital functional clues to be followed up experimentally.
                Bookmark

                Author and article information

                Journal
                BMC Bioinformatics
                BMC Bioinformatics
                BioMed Central (London )
                1471-2105
                2006
                6 February 2006
                : 7
                : 53
                Affiliations
                [1 ]Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
                [2 ]BioInfoBank Institute, ul. Limanowskiego 24A, 60-744 Poznan, Poland
                [3 ]Bioinformatics Unit, Department of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61 614 Poznan, Poland
                Article
                1471-2105-7-53
                10.1186/1471-2105-7-53
                1409798
                16460560
                38192c36-3d1c-4317-b96f-3ea507602685
                Copyright © 2006 von Grotthuss et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 6 August 2005
                : 6 February 2006
                Categories
                Database

                Bioinformatics & Computational biology
                Bioinformatics & Computational biology

                Comments

                Comment on this article