31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The complement inhibitory protein DAF (CD55) suppresses T cell immunity in vivo

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Decay-accelerating factor ([DAF] CD55) is a glycosylphosphatidylinositol-anchored membrane inhibitor of complement with broad clinical relevance. Here, we establish an additional and unexpected role for DAF in the suppression of adaptive immune responses in vivo. In both C57BL/6 and BALB/c mice, deficiency of the Daf1 gene, which encodes the murine homologue of human DAF, significantly enhanced T cell responses to active immunization. This phenotype was characterized by hypersecretion of interferon (IFN)-γ and interleukin (IL)-2, as well as down-regulation of the inhibitory cytokine IL-10 during antigen restimulation of lymphocytes in vitro. Compared with wild-type mice, Daf1 −/− mice also displayed markedly exacerbated disease progression and pathology in a T cell–dependent experimental autoimmune encephalomyelitis (EAE) model. However, disabling the complement system in Daf1 −/− mice normalized T cell secretion of IFN-γ and IL-2 and attenuated disease severity in the EAE model. These findings establish a critical link between complement and T cell immunity and have implications for the role of DAF and complement in organ transplantation, tumor evasion, and vaccine development.

          Related collections

          Most cited references72

          • Record: found
          • Abstract: not found
          • Article: not found

          Neuroscience. Developmental refining of neuroglial signaling?

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Purification of a membrane-associated protein complex required for protein translocation across the endoplasmic reticulum.

            The capacity of microsomal membranes to translocate nascent presecretory proteins across their lipid bilayer can be largely abolished by extracting them with high ionic strength buffers. It can be reconstituted by adding the salt extract back to the depleted membranes [Warren, G. & Doberstein, B. (1978) Nature (London) 273, 569-571]. Utilizing hydrophobic chromatography, we purified to homogeneity a protein component of the salt extract that reconstitutes the translocation activity of the extracted membranes. This component behaves as a homogeneous species upon gel filtration, ion-exchange chromatography, adsorption chromatography, and sucrose-gradient centrifugation. When examined by polyacrylamide gel electrophoresis in NaDodSO4, six polypeptides with apparent Mr of 72,000, 68,000, 54,000, 19,000, 14,000, and 9000 are observed in about equal and constant stoichiometry, suggesting that they are subunits of a complex. The sedimentation coefficient of 11S is in good agreement with the sum of the Mr of the subunits. The Mr 68,000 and 9000 subunits label intensely with N-[3H]ethylmaleimide. Thus, the reported sulfhydryl group requirement of the translocation activity in the unfractionated extract [Jackson, R. C., Walter, P. & Blobel, G. (1980) Nature (London), 286, 174-176] may be localized to either or both the Mr 68,000 and 9000 subunits of the purified complex.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              IgA Fc receptors.

              The IgA receptor family comprises a number of surface receptors including the polymeric Ig receptor involved in epithelial transport of IgA/IgM, the myeloid specific IgA Fc receptor (FcalphaRI or CD89), the Fcalpha/muR, and at least two alternative IgA receptors. These are the asialoglycoprotein receptor and the transferrin receptor, which have been implicated in IgA catabolism, and tissue IgA deposition. In this review we focus on the biology of FcalphaRI (CD89). FcalphaRI is expressed on neutrophils, eosinophils, monocytes/macrophages, dendritic cells, and Kupffer cells. This receptor represents a heterogeneously glycosylated transmembrane protein that binds both IgA subclasses with low affinity. A single gene encoding FcalphaRI has been isolated, which is located within the leukocyte receptor cluster on chromosome 19. The FcalphaRI alpha chain lacks canonical signal transduction domains but can associate with the FcR gamma-chain that bears an activation motif (ITAM) in the cytoplasmic domain, allowing activatory functions. FcalphaRI expressed alone mediates endocytosis and recyling of IgA. No FcalphaRI homologue has been defined in the mouse, and progress in defining the in vivo role of FcalphaRI has been made using human FcalphaRI transgenic (Tg) mice. FcalphaRI-Tg mice demonstrated FcalphaRI expression on Kupffer cells and so defined a key role for the receptor in mucosal defense. The receptor functions as a second line of antibacterial defense involving serum IgA rather than secretory IgA. Studies in FcalphaRI-Tg mice, furthermore, defined an essential role for soluble FcalphaRI in the development of IgA nephropathy by formation of circulating IgA-FcalphaRI complexes. Finally, recent work points out a role for human IgA in treatment of infectious and neoplastic diseases.
                Bookmark

                Author and article information

                Journal
                J Exp Med
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                21 February 2005
                : 201
                : 4
                : 567-577
                Affiliations
                [1 ]Institute for Translational Medicine and Therapeutics and Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
                [2 ]Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
                [3 ]Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
                Author notes

                CORRESPONDENCE Wen-Chao Song: Song@ 123456spirit.gcrc.upenn.edu

                Article
                20040863
                10.1084/jem.20040863
                2213052
                15710649
                381aa300-0da2-4afc-b4be-841c891dd0bf
                Copyright © 2005, The Rockefeller University Press
                History
                : 3 May 2004
                : 21 December 2004
                Categories
                Article

                Medicine
                Medicine

                Comments

                Comment on this article