17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rare intronic variants of TCF7L2 arising by selective sweeps in an indigenous population from Mexico

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Genetic variations of the TCF7L2 gene are associated with the development of Type 2 diabetes (T2D). The associated mutations have demonstrated an adaptive role in some human populations, but no studies have determined the impact of evolutionary forces on genetic diversity in indigenous populations from Mexico. Here, we sequenced and analyzed the variation of the TCF7L2 gene in three Amerindian populations and compared the results with whole-exon-sequencing of Mestizo populations from Sigma and the 1000 Genomes Project to assess the roles of selection and recombination in diversity.

          Results

          The diversity in the indigenous populations was biased to intronic regions. Most of the variation was low frequency. Only mutations rs77961654 and rs61724286 were located on exon 15. We did not observe variation in intronic region 4–6 in any of the three indigenous populations. In addition, we identified peaks of selective sweeps in the mestizo samples from the Sigma Project within this region. By replicating the analysis of association with T2D between case-controls from the Sigma Project, we determined that T2D was most highly associated with the rs7903146 risk allele and to a lesser extent with the other six variants. All associated markers were located in intronic region 4–6, and their r 2 values of linkage disequilibrium were significantly higher in the Mexican population than in Africans from the 1000 Genomes Project. We observed reticulations in both the haplotypes network analysis from seven marker associates and the neighborNet tree based on 6061 markers in the TCF7L2 gene identified from all samples of the 1000 Genomes Project. Finally, we identified two recombination hotspots in the upstream region and 3’ end of the TCF7L2 gene.

          Conclusions

          The lack of diversity in intronic region 4–6 in Indigenous populations could be an effect of selective sweeps generated by the selection of neighboring rare variants at T2D-associated mutations. The survivors’ variants make the intronic region 4–6 the area of the greatest population differentiation within the TCF7L2 gene. The abundance of selective peak sweeps in the downstream region of the TCF7L2 gene suggests that the TCF7L2 gene is part of a region that is in constant recombination between populations.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s12863-016-0372-7) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Linkage disequilibrium in the human genome.

          With the availability of a dense genome-wide map of single nucleotide polymorphisms (SNPs), a central issue in human genetics is whether it is now possible to use linkage disequilibrium (LD) to map genes that cause disease. LD refers to correlations among neighbouring alleles, reflecting 'haplotypes' descended from single, ancestral chromosomes. The size of LD blocks has been the subject of considerable debate. Computer simulations and empirical data have suggested that LD extends only a few kilobases (kb) around common SNPs, whereas other data have suggested that it can extend much further, in some cases greater than 100 kb. It has been difficult to obtain a systematic picture of LD because past studies have been based on only a few (1-3) loci and different populations. Here, we report a large-scale experiment using a uniform protocol to examine 19 randomly selected genomic regions. LD in a United States population of north-European descent typically extends 60 kb from common alleles, implying that LD mapping is likely to be practical in this population. By contrast, LD in a Nigerian population extends markedly less far. The results illuminate human history, suggesting that LD in northern Europeans is shaped by a marked demographic event about 27,000-53,000 years ago.
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            DIANA-microT web server: elucidating microRNA functions through target prediction

            Computational microRNA (miRNA) target prediction is one of the key means for deciphering the role of miRNAs in development and disease. Here, we present the DIANA-microT web server as the user interface to the DIANA-microT 3.0 miRNA target prediction algorithm. The web server provides extensive information for predicted miRNA:target gene interactions with a user-friendly interface, providing extensive connectivity to online biological resources. Target gene and miRNA functions may be elucidated through automated bibliographic searches and functional information is accessible through Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The web server offers links to nomenclature, sequence and protein databases, and users are facilitated by being able to search for targeted genes using different nomenclatures or functional features, such as the genes possible involvement in biological pathways. The target prediction algorithm supports parameters calculated individually for each miRNA:target gene interaction and provides a signal-to-noise ratio and a precision score that helps in the evaluation of the significance of the predicted results. Using a set of miRNA targets recently identified through the pSILAC method, the performance of several computational target prediction programs was assessed. DIANA-microT 3.0 achieved there with 66% the highest ratio of correctly predicted targets over all predicted targets. The DIANA-microT web server is freely available at www.microrna.gr/microT.
              • Record: found
              • Abstract: found
              • Article: not found

              Sequence variants in SLC16A11 are a common risk factor for type 2 diabetes in Mexico.

              Performing genetic studies in multiple human populations can identify disease risk alleles that are common in one population but rare in others, with the potential to illuminate pathophysiology, health disparities, and the population genetic origins of disease alleles. Here we analysed 9.2 million single nucleotide polymorphisms (SNPs) in each of 8,214 Mexicans and other Latin Americans: 3,848 with type 2 diabetes and 4,366 non-diabetic controls. In addition to replicating previous findings, we identified a novel locus associated with type 2 diabetes at genome-wide significance spanning the solute carriers SLC16A11 and SLC16A13 (P = 3.9 × 10(-13); odds ratio (OR) = 1.29). The association was stronger in younger, leaner people with type 2 diabetes, and replicated in independent samples (P = 1.1 × 10(-4); OR = 1.20). The risk haplotype carries four amino acid substitutions, all in SLC16A11; it is present at ~50% frequency in Native American samples and ~10% in east Asian, but is rare in European and African samples. Analysis of an archaic genome sequence indicated that the risk haplotype introgressed into modern humans via admixture with Neanderthals. The SLC16A11 messenger RNA is expressed in liver, and V5-tagged SLC16A11 protein localizes to the endoplasmic reticulum. Expression of SLC16A11 in heterologous cells alters lipid metabolism, most notably causing an increase in intracellular triacylglycerol levels. Despite type 2 diabetes having been well studied by genome-wide association studies in other populations, analysis in Mexican and Latin American individuals identified SLC16A11 as a novel candidate gene for type 2 diabetes with a possible role in triacylglycerol metabolism.

                Author and article information

                Contributors
                +52(55)53501900 , +52(55)5350-1999 , ldelbosque@inmegen.gob.mx
                Journal
                BMC Genet
                BMC Genet
                BMC Genetics
                BioMed Central (London )
                1471-2156
                26 May 2016
                26 May 2016
                2016
                : 17
                : 68
                Affiliations
                [ ]Laboratorio de Nutrigenética y Nutrigenómica, Instituto Nacional de Medicina Genómica, Periférico Sur No. 4809, Col. Arenal Tepepan, 14610 Mexico City, Mexico
                [ ]Instituto de Investigaciones Biomédicas, UNAM, Unidad de Biología Molecular y Medicina Genómica, UNAM/INCMNSZ, 04510 Mexico City, Mexico.
                [ ]Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada No. 950, Puerta 7, Edificio O, Planta Baja, Col. Independencia, 44340 Guadalajara, Jalisco Mexico
                [ ]Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición, Vasco de Quiroga 15, 14000 Mexico City, Mexico
                [ ]Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR)-Unidad, Blvd, Juan de Dios Bátiz Paredes #250, 81101 Sinaloa, Mexico
                Article
                372
                10.1186/s12863-016-0372-7
                4880969
                27230431
                3821b33a-f733-4b2d-b1d3-c13671694af6
                © Acosta et al. 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 26 August 2015
                : 22 April 2016
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2015

                Genetics
                tcf7l2 gene,type 2 diabetes,genetic association,sweeps selection,recombination hotspots
                Genetics
                tcf7l2 gene, type 2 diabetes, genetic association, sweeps selection, recombination hotspots

                Comments

                Comment on this article

                Related Documents Log