52
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Endothelial Dysfunction, Inflammation, and Apoptosis in Diabetes Mellitus

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Endothelial dysfunction is regarded as an important factor in the pathogenesis of vascular disease in obesity-related type 2 diabetes. The imbalance in repair and injury (hyperglycemia, hypertension, dyslipidemia) results in microvascular changes, including apoptosis of microvascular cells, ultimately leading to diabetes related complications. This review summarizes the mechanisms by which the interplay between endothelial dysfunction, inflammation, and apoptosis may cause (micro)vascular damage in patients with diabetes mellitus.

          Related collections

          Most cited references100

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia

          The current goal of diabetes therapy is to reduce time-averaged mean levels of glycemia, measured as HbA1c, to prevent diabetic complications. However, HbA1c only explains <25% of the variation in risk of developing complications. Because HbA1c does not correlate with glycemic variability when adjusted for mean blood glucose, we hypothesized that transient spikes of hyperglycemia may be an HbA1c–independent risk factor for diabetic complications. We show that transient hyperglycemia induces long-lasting activating epigenetic changes in the promoter of the nuclear factor κB (NF-κB) subunit p65 in aortic endothelial cells both in vitro and in nondiabetic mice, which cause increased p65 gene expression. Both the epigenetic changes and the gene expression changes persist for at least 6 d of subsequent normal glycemia, as do NF-κB–induced increases in monocyte chemoattractant protein 1 and vascular cell adhesion molecule 1 expression. Hyperglycemia-induced epigenetic changes and increased p65 expression are prevented by reducing mitochondrial superoxide production or superoxide-induced α-oxoaldehydes. These results highlight the dramatic and long-lasting effects that short-term hyperglycemic spikes can have on vascular cells and suggest that transient spikes of hyperglycemia may be an HbA1c–independent risk factor for diabetic complications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Direct proinflammatory effect of C-reactive protein on human endothelial cells.

            The acute-phase reactant C-reactive protein (CRP) is an important risk factor for coronary heart disease. However, the possible effects of CRP on vascular cells are not known. We tested the effects of CRP on expression of adhesion molecules in both human umbilical vein and coronary artery endothelial cells. Expression of vascular cell adhesion molecule (VCAM-1), intercellular adhesion molecule (ICAM-1), and E-selectin was assessed by flow cytometry. Incubation with recombinant human CRP (10 microg/mL) for 24 hours induced an approximately 10-fold increase in expression of ICAM-1 and a significant expression of VCAM-1, whereas a 6-hour incubation induced significant E-selectin expression. Adhesion molecule induction was similar to that observed in endothelial cells activated with interleukin-1beta. In coronary artery endothelial cells, induction of ICAM-1 and VCAM-1 was already present at 5 microg/mL and reached a maximum at 50 microg/mL, at which point a substantial increase in expression of E-selectin was also evident. The CRP effect was dependent on presence of human serum in the culture medium, because no effect was seen in cells cultured with serum-free medium. In contrast, interleukin-1beta was able to induce adhesion molecule expression in the absence of human serum. CRP induces adhesion molecule expression in human endothelial cells in the presence of serum. These findings support the hypothesis that CRP may play a direct role in promoting the inflammatory component of atherosclerosis and present a potential target for the treatment of atherosclerosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanisms of Increased Vascular Superoxide Production in Human Diabetes Mellitus: Role of NAD(P)H Oxidase and Endothelial Nitric Oxide Synthase

              Background — Increased superoxide production contributes to reduced vascular nitric oxide (NO) bioactivity and endothelial dysfunction in experimental models of diabetes. We characterized the sources and mechanisms underlying vascular superoxide production in human blood vessels from diabetic patients with coronary artery disease compared with nondiabetic patients. Methods and Results — Vascular superoxide production was quantified in both saphenous veins and internal mammary arteries from 45 diabetic and 45 matched nondiabetic patients undergoing coronary artery bypass surgery. NAD(P)H-dependent oxidases were important sources of vascular superoxide in both diabetic and nondiabetic patients, but both the activity of this enzyme system and the levels of NAD(P)H oxidase protein subunits (p22phox, p67phox, and p47phox) were significantly increased in diabetic veins and arteries. In nondiabetic vessels, endothelial NO synthase produced NO that scavenged superoxide. However, in diabetic vessels, the endothelium was an additional net source of superoxide production because of dysfunctional endothelial NO synthase that was corrected by intracellular tetrahydrobiopterin supplementation. Furthermore, increased superoxide production in diabetes was abrogated by the protein kinase C inhibitor chelerythrine. Conclusions — These observations suggest important roles for NAD(P)H oxidases, endothelial NO synthase uncoupling, and protein kinase C signaling in mediating increased vascular superoxide production and endothelial dysfunction in human diabetes mellitus.
                Bookmark

                Author and article information

                Journal
                Mediators Inflamm
                MI
                Mediators of Inflammation
                Hindawi Publishing Corporation
                0962-9351
                1466-1861
                2010
                15 June 2010
                : 2010
                : 792393
                Affiliations
                1Department of Rheumatology, Jan van Breemen Institute, Amsterdam, The Netherlands
                2Department of Rheumatology, VU University Medical Center, Amsterdam, The Netherlands
                3Department of Internal Medicine, VU University Medical Center, Amsterdam, The Netherlands
                4Department of Internal Medicine, Medical Center Alkmaar, Wilhelminalaan 12, 1815 JD Alkmaar, The Netherlands
                Author notes

                Academic Editor: Oreste Gualillo

                Article
                10.1155/2010/792393
                2903979
                20634940
                382730c3-182c-44df-9a4a-66a40e83a199
                Copyright © 2010 Inge A. M. van den Oever et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 1 December 2009
                : 22 March 2010
                Categories
                Review Article

                Immunology
                Immunology

                Comments

                Comment on this article