14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      HDL as a drug and nucleic acid delivery vehicle

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This review is intended to evaluate the research findings and potential clinical applications of drug transport systems, developed based on the concepts of the structure/function and physiological role(s) of high density lipoprotein type nanoparticles. These macromolecules provide targeted transport of cholesteryl esters (a highly lipophilic payload) in their natural/physiological environment. The ability to accommodate highly water insoluble constituents in their core regions enables High density lipoproteins (HDL) type nanoparticles to effectively transport hydrophobic drugs subsequent to systemic administration. Even though the application of reconstituted HDL in the treatment of a number of diseases is reviewed, the primary focus is on the application of HDL type drug delivery agents in cancer chemotherapy. The use of both native and synthetic HDL as drug delivery agents is compared to evaluate their respective potentials for commercial and clinical development. The current status and future perspectives for HDL type nanoparticles are discussed, including current obstacles and future applications in therapeutics.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Liposomes as nanomedical devices

          Since their discovery in the 1960s, liposomes have been studied in depth, and they continue to constitute a field of intense research. Liposomes are valued for their biological and technological advantages, and are considered to be the most successful drug-carrier system known to date. Notable progress has been made, and several biomedical applications of liposomes are either in clinical trials, are about to be put on the market, or have already been approved for public use. In this review, we briefly analyze how the efficacy of liposomes depends on the nature of their components and their size, surface charge, and lipidic organization. Moreover, we discuss the influence of the physicochemical properties of liposomes on their interaction with cells, half-life, ability to enter tissues, and final fate in vivo. Finally, we describe some strategies developed to overcome limitations of the “first-generation” liposomes, and liposome-based drugs on the market and in clinical trials.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The role of cholesterol metabolism and cholesterol transport in carcinogenesis: a review of scientific findings, relevant to future cancer therapeutics

            While the unique metabolic activities of malignant tissues as potential targets for cancer therapeutics has been the subject of several recent reviews, the role of cholesterol metabolism in this context is yet to be fully explored. Cholesterol is an essential component of mammalian cell membranes as well as a precursor of bile acids and steroid hormones. The hypothesis that cancer cells need excess cholesterol and intermediates of the cholesterol biosynthesis pathway to maintain a high level of proliferation is well accepted, however the mechanisms by which malignant cells and tissues reprogram cholesterol synthesis, uptake and efflux are yet to be fully elucidated as potential therapeutic targets. High and low density plasma lipoproteins are the likely major suppliers of cholesterol to cancer cells and tumors, potentially via receptor mediated mechanisms. This review is primarily focused on the role(s) of lipoproteins in carcinogenesis, and their future roles as drug delivery vehicles for targeted cancer chemotherapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The cardioprotective protein apolipoprotein A1 promotes potent anti-tumorigenic effects.

              Here, we show that apolipoprotein A1 (apoA1), the major protein component of high density lipoprotein (HDL), through both innate and adaptive immune processes, potently suppresses tumor growth and metastasis in multiple animal tumor models, including the aggressive B16F10L murine malignant melanoma model. Mice expressing the human apoA1 transgene (A1Tg) exhibited increased infiltration of CD11b(+) F4/80(+) macrophages with M1, anti-tumor phenotype, reduced tumor burden and metastasis, and enhanced survival. In contrast, apoA1-deficient (A1KO) mice showed markedly heightened tumor growth and reduced survival. Injection of human apoA1 into A1KO mice inoculated with tumor cells remarkably reduced both tumor growth and metastasis, enhanced survival, and promoted regression of both tumor and metastasis burden when administered following palpable tumor formation and metastasis development. Studies with apolipoprotein A2 revealed the anti-cancer therapeutic effect was specific to apoA1. In vitro studies ruled out substantial direct suppressive effects by apoA1 or HDL on tumor cells. Animal models defective in different aspects of immunity revealed both innate and adaptive arms of immunity contribute to complete apoA1 anti-tumor activity. This study reveals a potent immunomodulatory role for apoA1 in the tumor microenvironment, altering tumor-associated macrophages from a pro-tumor M2 to an anti-tumor M1 phenotype. Use of apoA1 to redirect in vivo elicited tumor-infiltrating macrophages toward tumor rejection may hold benefit as a potential cancer therapeutic.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pharmacol
                Front Pharmacol
                Front. Pharmacol.
                Frontiers in Pharmacology
                Frontiers Media S.A.
                1663-9812
                26 October 2015
                2015
                : 6
                : 247
                Affiliations
                [1] 1Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center , Fort Worth, TX, USA
                [2] 2Department of Pediatrics, University of North Texas Health Science Center , Fort Worth, TX, USA
                [3] 3Lipomedics Inc. , Fort Worth, TX, USA
                Author notes

                Edited by: Norman E. Miller, Magdalen College, UK

                Reviewed by: Daniele Tibullo, University of Catania, Italy; Ghanshyam Upadhyay, City College of New York, USA

                *Correspondence: Andras G. Lacko, andras.lacko@ 123456unthsc.edu

                This article was submitted to Experimental Pharmacology and Drug Discovery, a section of the journal Frontiers in Pharmacology.

                Article
                10.3389/fphar.2015.00247
                4620406
                26578957
                38273f13-6b0e-41a4-886d-0f4526e1e1c4
                Copyright © 2015 Lacko, Sabnis, Nagarajan and McConathy.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 03 July 2015
                : 12 October 2015
                Page count
                Figures: 1, Tables: 1, Equations: 0, References: 58, Pages: 6, Words: 4792
                Categories
                Pharmacology
                Review

                Pharmacology & Pharmaceutical medicine
                lipoproteins,hdl,drug delivery,nucleic acid delivery,therapeutics

                Comments

                Comment on this article