Blog
About

2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      New directions in predictive processing

      1

      Mind & Language

      Wiley

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 40

          • Record: found
          • Abstract: found
          • Article: not found

          The free-energy principle: a unified brain theory?

           Karl Friston (2010)
          A free-energy principle has been proposed recently that accounts for action, perception and learning. This Review looks at some key brain theories in the biological (for example, neural Darwinism) and physical (for example, information theory and optimal control theory) sciences from the free-energy perspective. Crucially, one key theme runs through each of these theories - optimization. Furthermore, if we look closely at what is optimized, the same quantity keeps emerging, namely value (expected reward, expected utility) or its complement, surprise (prediction error, expected cost). This is the quantity that is optimized under the free-energy principle, which suggests that several global brain theories might be unified within a free-energy framework.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Whatever next? Predictive brains, situated agents, and the future of cognitive science.

             Andy Clark (2013)
            Brains, it has recently been argued, are essentially prediction machines. They are bundles of cells that support perception and action by constantly attempting to match incoming sensory inputs with top-down expectations or predictions. This is achieved using a hierarchical generative model that aims to minimize prediction error within a bidirectional cascade of cortical processing. Such accounts offer a unifying model of perception and action, illuminate the functional role of attention, and may neatly capture the special contribution of cortical processing to adaptive success. This target article critically examines this "hierarchical prediction machine" approach, concluding that it offers the best clue yet to the shape of a unified science of mind and action. Sections 1 and 2 lay out the key elements and implications of the approach. Section 3 explores a variety of pitfalls and challenges, spanning the evidential, the methodological, and the more properly conceptual. The paper ends (sections 4 and 5) by asking how such approaches might impact our more general vision of mind, experience, and agency.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Predictive coding explains binocular rivalry: an epistemological review.

              Binocular rivalry occurs when the eyes are presented with different stimuli and subjective perception alternates between them. Though recent years have seen a number of models of this phenomenon, the mechanisms behind binocular rivalry are still debated and we still lack a principled understanding of why a cognitive system such as the brain should exhibit this striking kind of behaviour. Furthermore, psychophysical and neurophysiological (single cell and imaging) studies of rivalry are not unequivocal and have proven difficult to reconcile within one framework. This review takes an epistemological approach to rivalry that considers the brain as engaged in probabilistic unconscious perceptual inference about the causes of its sensory input. We describe a simple empirical Bayesian framework, implemented with predictive coding, which seems capable of explaining binocular rivalry and reconciling many findings. The core of the explanation is that selection of one stimulus, and subsequent alternation between stimuli in rivalry occur when: (i) there is no single model or hypothesis about the causes in the environment that enjoys both high likelihood and high prior probability and (ii) when one stimulus dominates, the bottom-up, driving signal for that stimulus is explained away while, crucially, the bottom-up signal for the suppressed stimulus is not, and remains as an unexplained but explainable prediction error signal. This induces instability in perceptual dynamics that can give rise to perceptual transitions or alternations during rivalry.
                Bookmark

                Author and article information

                Journal
                Mind & Language
                Mind & Language
                Wiley
                0268-1064
                1468-0017
                March 02 2020
                March 02 2020
                Affiliations
                [1 ]Philosophy & Cognition LabMonash University Melbourne Australia
                Article
                10.1111/mila.12281
                © 2020

                http://onlinelibrary.wiley.com/termsAndConditions#am

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                Comments

                Comment on this article