+1 Recommend
2 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Variation in genome size and karyotype among closely related aphid parasitoids (Hymenoptera, Aphelinidae)

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          Genome sizes were measured and determined for the karyotypes of nine species of aphid parasitoids in the genus Aphelinus Dalman,1820. Large differences in genome size and karyotype were found between Aphelinus species, which is surprising given the similarity in their morphology and life history. Genome sizes estimated from flow cytometry were larger for species in the Aphelinus mali (Haldeman, 1851) complex than those for the species in the Aphelinus daucicola Kurdjumov, 1913 and Aphelinus varipes (Förster,1841) complexes. Haploid karyotypes of the Aphelinus daucicola and Aphelinus mali complexes comprised five metacentric chromosomes of similar size, whereas those of the Aphelinus varipes complex had four chromosomes, including a larger and a smaller metacentric chromosome and two small acrocentric chromosomes or a large metacentric and three smaller acrocentric chromosomes. Total lengths of female haploid chromosome sets correlated with genome sizes estimated from flow cytometry. Phylogenetic analysis of karyotypic variation revealed a chromosomal fusion together with pericentric inversions in the common ancestor of the Aphelinus varipes complex and further pericentric inversions in the clade comprising Aphelinus kurdjumovi Mercet, 1930 and Aphelinus hordei Kurdjumov, 1913. Fluorescence in situ hybridization with a 28S ribosomal DNA probe revealed a single site on chromosomes of the haploid karyotype of Aphelinus coreae Hopper & Woolley, 2012. The differences in genome size and total chromosome length between species complexes matched the phylogenetic divergence between them.

          Related collections

          Most cited references 72

          • Record: found
          • Abstract: found
          • Article: not found

          Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization.

          This report describes the use of fluorescence in situ hybridization for chromosome classification and detection of chromosome aberrations. Biotin-labeled DNA was hybridized to target chromosomes and subsequently rendered fluorescent by successive treatments with fluorescein-labeled avidin and biotinylated anti-avidin antibody. Human chromosomes in human-hamster hybrid cell lines were intensely and uniformly stained in metaphase spreads and interphase nuclei when human genomic DNA was used as a probe. Interspecies translocations were detected easily at metaphase. The human-specific fluorescence intensity from cell nuclei and chromosomes was proportional to the amount of target human DNA. Human Y chromosomes were fluorescently stained in metaphase and interphase nuclei by using a 0.8-kilobase DNA probe specific for the Y chromosome. Cells from males were 40 times brighter than those from females. Both Y chromosomal domains were visible in most interphase nuclei of XYY amniocytes. Human 28S ribosomal RNA genes on metaphase chromosomes were distinctly stained by using a 1.5-kilobase DNA probe.
            • Record: found
            • Abstract: found
            • Article: not found

            Analysis of Drosophila species genome size and satellite DNA content reveals significant differences among strains as well as between species.

            The size of eukaryotic genomes can vary by several orders of magnitude, yet genome size does not correlate with the number of genes nor with the size or complexity of the organism. Although "whole"-genome sequences, such as those now available for 12 Drosophila species, provide information about euchromatic DNA content, they cannot give an accurate estimate of genome sizes that include heterochromatin or repetitive DNA content. Moreover, genome sequences typically represent only one strain or isolate of a single species that does not reflect intraspecies variation. To more accurately estimate whole-genome DNA content and compare these estimates to newly assembled genomes, we used flow cytometry to measure the 2C genome values, relative to Drosophila melanogaster. We estimated genome sizes for the 12 sequenced Drosophila species as well as 91 different strains of 38 species of Drosophilidae. Significant differences in intra- and interspecific 2C genome values exist within the Drosophilidae. Furthermore, by measuring polyploid 16C ovarian follicle cell underreplication we estimated the amount of satellite DNA in each of these species. We found a strong correlation between genome size and amount of satellite underreplication. Addition and loss of heterochromatin satellite repeat elements appear to have made major contributions to the large differences in genome size observed in the Drosophilidae.
              • Record: found
              • Abstract: found
              • Article: not found

              Modes of spontaneous chromosomal mutation and karyotype evolution in ants with reference to the minimum interaction hypothesis.

              Aspects of chromosomal mutation and karyotype evolution in ants are discussed with reference to recently accumulated karyological data, and to detailed karyotype analyses of several species or species complexes with low chromosome number and unusual chromosomal mutations (the complexes of Myrmecia pilosula (Smith) (n = 1, 5 or 9 to 16); M. piliventris Smith (n = 2, 3-4, 17 or 32), and Ponera scabra Wheeler (n = 3 or 4, 2n = 7 or 8). Translocations and Robertsonian polymorphisms are confirmed to be non-randomly distributed among ants -the former are found at high frequencies in species with low chromosome numbers (n less than or equal to 12), while the latter predominate in those with high numbers (n greater than 12). This situation is consistent with the minimum interaction hypothesis of Imai et al. (1986), under which translocations are expected to occur most frequently in low-numbered karyotypes, and that the resulting genetic risks are minimized by increases in chromosome and/or arm numbers through centric fission and pericentric inversion. Centric fusion is considered to be a transient event in karyotype evolution, resulting from telomere instability in acrocentric chromosomes.

                Author and article information

                Comp Cytogenet
                Comp Cytogenet
                Comparative Cytogenetics
                Pensoft Publishers
                23 February 2017
                : 11
                : 1
                : 97-117
                [1 ] Botanical Garden, Moscow State University, Moscow, Russia
                [2 ] Beneficial Insects Introduction Research Unit, ARS-USDA, 501 South Chapel Street, Newark, Delaware, United States of America
                [3 ] Department of Entomology, Texas A&M University, College Station, Texas, United States of America
                Author notes
                Corresponding author: Keith R. Hopper ( Keith.Hopper@ 123456ars.usda.gov )

                Academic editor: M. Bressa

                Vladimir E. Gokhman, Kristen L. Kuhn, James B. Woolley, Keith R. Hopper

                This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                Research Article


                Comment on this article

                Similar content 114

                Cited by 6

                Most referenced authors 344