4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Exogenous ketone salts do not improve cognitive responses after a high-intensity exercise protocol in healthy college-aged males

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references11

          • Record: found
          • Abstract: found
          • Article: not found

          Insulin, ketone bodies, and mitochondrial energy transduction.

          Addition of insulin or a physiological ratio of ketone bodies to buffer with 10 mM glucose increased efficiency (hydraulic work/energy from O2 consumed) of working rat heart by 25%, and the two in combination increased efficiency by 36%. These additions increased the content of acetyl CoA by 9- to 18-fold, increased the contents of metabolites of the first third of the tricarboxylic acid (TCA) cycle 2- to 5-fold, and decreased succinate, oxaloacetate, and aspartate 2- to 3-fold. Succinyl CoA, fumarate, and malate were essentially unchanged. The changes in content of TCA metabolites resulted from a reduction of the free mitochondrial NAD couple by 2- to 10-fold and oxidation of the mitochondrial coenzyme Q couple by 2- to 4-fold. Cytosolic pH, measured using 31P-NMR spectra, was invariant at about 7.0. The total intracellular bicarbonate indicated an increase in mitochondrial pH from 7.1 with glucose to 7.2, 7.5 and 7.4 with insulin, ketones, and the combination, respectively. The decrease in Eh7 of the mitochondrial NAD couple, Eh7NAD+/NADH, from -280 to -300 mV and the increase in Eh7 of the coenzyme Q couple, Eh7Q/QH2, from -4 to +12 mV was equivalent to an increase from -53 kJ to -60 kJ/2 mol e in the reaction catalyzed by the mitochondrial NADH dehydrogenase multienzyme complex (EC 1.6.5.3). The increase in the redox energy of the mitochondrial cofactor couples paralleled the increase in the free energy of cytosolic ATP hydrolysis, delta GATP. The potential of the mitochondrial relative to the cytosolic phases, Emito/cyto, calculated from delta GATP and delta pH on the assumption of a 4 H+ transfer for each ATP synthesized, was -143 mV during perfusion with glucose or glucose plus insulin, and decreased to -120 mV on addition of ketones. Viewed in this light, the moderate ketosis characteristic of prolonged fasting or type II diabetes appears to be an elegant compensation for the defects in mitochondrial energy transduction associated with acute insulin deficiency or mitochondrial senescence.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Novel ketone diet enhances physical and cognitive performance

            Ketone bodies are the most energy-efficient fuel and yield more ATP per mole of substrate than pyruvate and increase the free energy released from ATP hydrolysis. Elevation of circulating ketones via high-fat, low-carbohydrate diets has been used for the treatment of drug-refractory epilepsy and for neurodegenerative diseases, such as Parkinson’s disease. Ketones may also be beneficial for muscle and brain in times of stress, such as endurance exercise. The challenge has been to raise circulating ketone levels by using a palatable diet without altering lipid levels. We found that blood ketone levels can be increased and cholesterol and triglycerides decreased by feeding rats a novel ketone ester diet: chow that is supplemented with (R)-3-hydroxybutyl (R)-3-hydroxybutyrate as 30% of calories. For 5 d, rats on the ketone diet ran 32% further on a treadmill than did control rats that ate an isocaloric diet that was supplemented with either corn starch or palm oil (P < 0.05). Ketone-fed rats completed an 8-arm radial maze test 38% faster than did those on the other diets, making more correct decisions before making a mistake (P < 0.05). Isolated, perfused hearts from rats that were fed the ketone diet had greater free energy available from ATP hydrolysis during increased work than did hearts from rats on the other diets as shown by using [31P]-NMR spectroscopy. The novel ketone diet, therefore, improved physical performance and cognitive function in rats, and its energy-sparing properties suggest that it may help to treat a range of human conditions with metabolic abnormalities.—Murray, A. J., Knight, N. S., Cole, M. A., Cochlin, L. E., Carter, E., Tchabanenko, K., Pichulik, T., Gulston, M. K., Atherton, H. J., Schroeder, M. A., Deacon, R. M. J., Kashiwaya, Y., King, M. T., Pawlosky, R., Rawlins, J. N. P., Tyler, D. J., Griffin, J. L., Robertson, J., Veech, R. L., Clarke, K. Novel ketone diet enhances physical and cognitive performance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nutritional ketone salts increase fat oxidation but impair high-intensity exercise performance in healthy adult males.

              This study investigated the impact of raising plasma beta-hydroxybutyrate (β-OHB) through ingestion of ketone salts on substrate oxidation and performance during cycling exercise. Ten healthy adult males (age, 23 ± 3 years; body mass index, 25 ± 3 kg/m(2), peak oxygen uptake, 45 ± 10 mL/(kg·min)(-1)) were recruited to complete 2 experimental trials. Before enrollment in the experimental conditions, baseline anthropometrics and cardiorespiratory fitness (peak oxygen uptake) were assessed and familiarization to the study protocol was provided. On experimental days, participants reported to the laboratory in the fasted state and consumed either 0.3 g/kg β-OHB ketone salts or a flavour-matched placebo at 30 min prior to engaging in cycling exercise. Subjects completed steady-state exercise at 30%, 60%, and 90% ventilatory threshold (VT) followed by a 150-kJ cycling time-trial. Respiratory exchange ratio (RER) and total substrate oxidation were derived from indirect calorimetry. Plasma glucose, lactate, and ketones were measured at baseline, 30 min post-supplement, post-steady-state exercise, and immediately following the time-trial. Plasma β-OHB was elevated from baseline and throughout the entire protocol in the ketone condition (p < 0.05). RER was lower at 30% and 60% VT in the ketone compared with control condition. Total fat oxidation was greater in the ketone versus control (p = 0.05). Average time-trial power output was ∼7% lower (-16 W, p = 0.029) in the ketone condition. Ingestion of ketone salts prior to exercise increases fat oxidation during steady-state exercise but impairs high-intensity exercise performance.
                Bookmark

                Author and article information

                Journal
                Applied Physiology, Nutrition, and Metabolism
                Appl. Physiol. Nutr. Metab.
                Canadian Science Publishing
                1715-5312
                1715-5320
                July 2018
                July 2018
                : 43
                : 7
                : 711-717
                Affiliations
                [1 ]Applied Physiology Lab, Department of Kinesiology, Mississippi State University, Mississippi State, MS 39762, USA.
                [2 ]Neuromechanics Lab, Department of Kinesiology, Mississippi State University, Mississippi State, MS 39762, USA.
                Article
                10.1139/apnm-2017-0724
                29451991
                384fbf8f-8e2b-4271-b8bc-1daba319cf4d
                © 2018

                http://www.nrcresearchpress.com/page/about/CorporateTextAndDataMining

                History

                Comments

                Comment on this article