+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: not found

      Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota.

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Manipulation of the gut microbiota holds great promise for the treatment of inflammatory and allergic diseases. Although numerous probiotic microorganisms have been identified, there remains a compelling need to discover organisms that elicit more robust therapeutic responses, are compatible with the host, and can affect a specific arm of the host immune system in a well-controlled, physiological manner. Here we use a rational approach to isolate CD4(+)FOXP3(+) regulatory T (Treg)-cell-inducing bacterial strains from the human indigenous microbiota. Starting with a healthy human faecal sample, a sequence of selection steps was applied to obtain mice colonized with human microbiota enriched in Treg-cell-inducing species. From these mice, we isolated and selected 17 strains of bacteria on the basis of their high potency in enhancing Treg cell abundance and inducing important anti-inflammatory molecules--including interleukin-10 (IL-) and inducible T-cell co-stimulator (ICOS)--in Treg cells upon inoculation into germ-free mice. Genome sequencing revealed that the 17 strains fall within clusters IV, XIVa and XVIII of Clostridia, which lack prominent toxins and virulence factors. The 17 strains act as a community to provide bacterial antigens and a TGF-β-rich environment to help expansion and differentiation of Treg cells. Oral administration of the combination of 17 strains to adult mice attenuated disease in models of colitis and allergic diarrhoea. Use of the isolated strains may allow for tailored therapeutic manipulation of human immune disorders.

          Related collections

          Most cited references5

          • Record: found
          • Abstract: found
          • Article: not found

          Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control T(H)2 responses.

          In the course of infection or autoimmunity, particular transcription factors orchestrate the differentiation of T(H)1, T(H)2 or T(H)17 effector cells, the responses of which are limited by a distinct lineage of suppressive regulatory T cells (T(reg)). T(reg) cell differentiation and function are guided by the transcription factor Foxp3, and their deficiency due to mutations in Foxp3 results in aggressive fatal autoimmune disease associated with sharply augmented T(H)1 and T(H)2 cytokine production. Recent studies suggested that Foxp3 regulates the bulk of the Foxp3-dependent transcriptional program indirectly through a set of transcriptional regulators serving as direct Foxp3 targets. Here we show that in mouse T(reg) cells, high amounts of interferon regulatory factor-4 (IRF4), a transcription factor essential for T(H)2 effector cell differentiation, is dependent on Foxp3 expression. We proposed that IRF4 expression endows T(reg) cells with the ability to suppress T(H)2 responses. Indeed, ablation of a conditional Irf4 allele in T(reg) cells resulted in selective dysregulation of T(H)2 responses, IL4-dependent immunoglobulin isotype production, and tissue lesions with pronounced plasma cell infiltration, in contrast to the mononuclear-cell-dominated pathology typical of mice lacking T(reg) cells. Our results indicate that T(reg) cells use components of the transcriptional machinery, promoting a particular type of effector CD4(+) T cell differentiation, to efficiently restrain the corresponding type of the immune response.
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Ribosomal multilocus sequence typing: universal characterization of bacteria from domain to strain

            No single genealogical reconstruction or typing method currently encompasses all levels of bacterial diversity, from domain to strain. We propose ribosomal multilocus sequence typing (rMLST), an approach which indexes variation of the 53 genes encoding the bacterial ribosome protein subunits (rps genes), as a means of integrating microbial genealogy and typing. As with multilocus sequence typing (MLST), rMLST employs curated reference sequences to identify gene variants efficiently and rapidly. The rps loci are ideal targets for a universal characterization scheme as they are: (i) present in all bacteria; (ii) distributed around the chromosome; and (iii) encode proteins which are under stabilizing selection for functional conservation. Collectively, the rps loci exhibit variation that resolves bacteria into groups at all taxonomic and most typing levels, providing significantly more resolution than 16S small subunit rRNA gene phylogenies. A web-accessible expandable database, comprising whole-genome data from more than 1900 bacterial isolates, including 28 draft genomes assembled de novo from the European Bioinformatics Institute (EBI) sequence read archive, has been assembled. The rps gene variation catalogued in this database permits rapid and computationally non-intensive identification of the phylogenetic position of any bacterial sequence at the domain, phylum, class, order, family, genus, species and strain levels. The groupings generated with rMLST data are consistent with current nomenclature schemes and independent of the clustering algorithm used. This approach is applicable to the other domains of life, potentially providing a rational and universal approach to the classification of life that is based on one of its fundamental features, the translation mechanism.
              • Record: found
              • Abstract: found
              • Article: not found

              Thymus-derived regulatory T cells control tolerance to commensal microbiota

              Peripheral mechanisms preventing autoimmunity and maintaining tolerance to commensal microbiota involve CD4+Foxp3+ regulatory T cells 1,2 generated in the thymus (tTregs) or extrathymically by induction of naive CD4+Foxp3− T cells (iTregs). Prior studies suggested that the T cell receptor (TCR) repertoires of tTregs and iTregs are biased towards self and non-self antigens, respectively 3–6 but their relative contribution in controlling immunopathology, e.g. colitis and other untoward inflammatory responses triggered by different types of antigens, remains unresolved 7 . The intestine, and especially the colon, is a particularly suitable organ to study this question, given the variety of self-, microbiota- and food-derived antigens to which Tregs and other T cell populations are exposed. Intestinal environments can enhance conversion to a regulatory lineage 8,9 and favor tolerogenic presentation of antigens to naive CD4+ T cells 10,11 , suggesting that intestinal homeostasis depends on microbiota-specific iTregs 12–15 . Here, to identify the origin and antigen-specificity of intestinal Tregs, we performed single cell as well as high-throughput (HT) sequencing of the TCR repertoires of CD4+Foxp3+ and CD4+Foxp3− T cells and analyzed their reactivity against specific commensal species. We show that tTregs constitute the majority of Tregs in all lymphoid and intestinal organs, including colon, where their repertoire is heavily influenced by the composition of the microbiota. Our results suggest that tTregs, and not iTregs, dominantly mediate tolerance to antigens produced by intestinal commensals.

                Author and article information

                Springer Science and Business Media LLC
                Aug 08 2013
                : 500
                : 7461
                [1 ] RIKEN Center for Integrative Medical Sciences (IMS-RCAI), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.


                Comment on this article