63
views
1
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Suspected cases of intracontinental Burkholderia pseudomallei sequence type homoplasy resolved using whole-genome sequencing

      other

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Burkholderia pseudomallei is a Gram-negative environmental bacterium that causes melioidosis, a disease of high mortality in humans and animals. Multilocus sequence typing (MLST) is a popular and portable genotyping method that has been used extensively to characterise the genetic diversity of B. pseudomallei populations. MLST has been central to our understanding of the underlying phylogeographical signal present in the B. pseudomallei genome, revealing distinct populations on both the intra- and the inter-continental level. However, due to its high recombination rate, it is possible for B. pseudomallei isolates to share the same multilocus sequence type (ST) despite being genetically and geographically distinct, with two cases of ‘ST homoplasy’ recently reported between Cambodian and Australian B. pseudomallei isolates. This phenomenon can dramatically confound conclusions about melioidosis transmission patterns and source attribution, a critical issue for bacteria such as B. pseudomallei that are of concern due to their potential for use as bioweapons. In this study, we used whole-genome sequencing to identify the first reported instances of intracontinental ST homoplasy, which involved ST-722 and ST-804 B. pseudomallei isolates separated by large geographical distances. In contrast, a third suspected homoplasy case was shown to be a true long-range (460 km) dispersal event between a remote Australian island and the Australian mainland. Our results show that, whilst a highly useful and portable method, MLST can occasionally lead to erroneous conclusions about isolate origin and disease attribution. In cases where a shared ST is identified between geographically distant locales, whole-genome sequencing should be used to resolve strain origin.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms.

          Traditional and molecular typing schemes for the characterization of pathogenic microorganisms are poorly portable because they index variation that is difficult to compare among laboratories. To overcome these problems, we propose multilocus sequence typing (MLST), which exploits the unambiguous nature and electronic portability of nucleotide sequence data for the characterization of microorganisms. To evaluate MLST, we determined the sequences of approximately 470-bp fragments from 11 housekeeping genes in a reference set of 107 isolates of Neisseria meningitidis from invasive disease and healthy carriers. For each locus, alleles were assigned arbitrary numbers and dendrograms were constructed from the pairwise differences in multilocus allelic profiles by cluster analysis. The strain associations obtained were consistent with clonal groupings previously determined by multilocus enzyme electrophoresis. A subset of six gene fragments was chosen that retained the resolution and congruence achieved by using all 11 loci. Most isolates from hyper-virulent lineages of serogroups A, B, and C meningococci were identical for all loci or differed from the majority type at only a single locus. MLST using six loci therefore reliably identified the major meningococcal lineages associated with invasive disease. MLST can be applied to almost all bacterial species and other haploid organisms, including those that are difficult to cultivate. The overwhelming advantage of MLST over other molecular typing methods is that sequence data are truly portable between laboratories, permitting one expanding global database per species to be placed on a World-Wide Web site, thus enabling exchange of molecular typing data for global epidemiology via the Internet.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Parallel bacterial evolution within multiple patients identifies candidate pathogenicity genes

            Bacterial pathogens evolve during the infection of their human hosts 1-8 , but separating adaptive and neutral mutations remains challenging 9-11 . Here, we identify bacterial genes under adaptive evolution by tracking recurrent patterns of mutations in the same pathogenic strain during the infection of multiple patients. We conducted a retrospective study of a Burkholderia dolosa outbreak among people with cystic fibrosis, sequencing the genomes of 112 isolates collected from 14 individuals over 16 years. We find that 17 bacterial genes acquired non-synonymous mutations in multiple individuals, which indicates parallel adaptive evolution. Mutations in these genes illuminate the genetic basis of important pathogenic phenotypes, including antibiotic resistance and bacterial membrane composition, and implicate oxygen-dependent gene regulation as paramount in lung infections. Several genes have not been previously implicated in pathogenesis, suggesting new therapeutic targets. The identification of parallel molecular evolution suggests key selection forces acting on pathogens within humans and can help predict and prepare for their future evolutionary course.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Multilocus sequence typing and evolutionary relationships among the causative agents of melioidosis and glanders, Burkholderia pseudomallei and Burkholderia mallei.

              A collection of 147 isolates of Burkholderia pseudomallei, B. mallei, and B. thailandensis was characterized by multilocus sequence typing (MLST). The 128 isolates of B. pseudomallei, the causative agent of melioidosis, were obtained from diverse geographic locations, from humans and animals with disease, and from the environment and were resolved into 71 sequence types. The utility of the MLST scheme for epidemiological investigations was established by analyzing isolates from captive marine mammals and birds and from humans in Hong Kong with melioidosis. MLST gave a level of resolution similar to that given by pulsed-field gel electrophoresis and identified the same three clones causing disease in animals, each of which was also associated with disease in humans. The average divergence between the alleles of B. thailandensis and B. pseudomallei was 3.2%, and there was no sharing of alleles between these species. Trees constructed from differences in the allelic profiles of the isolates and from the concatenated sequences of the seven loci showed that the B. pseudomallei isolates formed a cluster of closely related lineages that were fully resolved from the cluster of B. thailandensis isolates, confirming their separate species status. However, isolates of B. mallei, the causative agent of glanders, recovered from three continents over a 30-year period had identical allelic profiles, and the B. mallei isolates clustered within the B. pseudomallei group of isolates. Alleles at six of the seven loci in B. mallei were also present within B. pseudomallei isolates, and B. mallei is a clone of B. pseudomallei that, on population genetics grounds, should not be given separate species status.
                Bookmark

                Author and article information

                Journal
                Microb Genom
                Microb Genom
                MGen
                Microbial Genomics
                Microbiology Society
                2057-5858
                November 2017
                14 November 2017
                : 3
                : 11
                : e000139
                Affiliations
                [ 1]Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University , Darwin, Australia
                [ 2]Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast , Sippy Downs, Queensland, Australia
                [ 3]Research Institute for the Environment and Livelihoods, Charles Darwin University , Darwin, Australia
                Author notes
                *Correspondence: Erin P. Price, eprice@ 123456usc.edu.au

                Three supplementary figures are available with the online Supplementary Material.

                All supporting data, code and protocols have been provided within the article or through supplementary data files.

                Article
                mgen000139
                10.1099/mgen.0.000139
                5729916
                29208140
                386bd561-c110-4862-a4ef-edf1a81fc7a5
                © 2017 The Authors

                This is an open access article under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

                History
                : 27 July 2017
                : 30 October 2017
                Funding
                Funded by: National Health and Medical Research Council
                Award ID: 1078557
                Funded by: National Health and Medical Research Council
                Award ID: 1046812, 1098337
                Funded by: National Health and Medical Research Council
                Award ID: 1131932
                Funded by: Department of Education, Australian Government
                Funded by: Advance Queensland
                Award ID: AQRF13016-17RD2
                Funded by: University of the Sunshine Coast
                Categories
                Short Paper
                Microbial Evolution and Epidemiology
                Phylogeography
                Custom metadata
                0

                genomics,melioidosis,phylogenetics,homoplasy,source tracing
                genomics, melioidosis, phylogenetics, homoplasy, source tracing

                Comments

                Comment on this article