Blog
About

7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Novel three-dimensional scaffolds of poly(L-lactic acid) microfibers using electrospinning and mechanical expansion: Fabrication and bone regeneration.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Poly(L-lactic acid) (PLLA) microfibrous scaffolds with three-dimensional (3D) structures were fabricated using an electrospinning technique with a subsequent mechanical expansion process. To achieve a 3D fibrous structure, the fusion at the contact points of the as-spun PLLA microfibers was avoided using an appropriate binary solvent system of methylene chloride and acetone. The solvent composition was optimized based on the solvent power, volatility, and viscosity (methylene chloride:acetone = 9:1 volume ratio). The final 3D structure of the electrospun scaffolds was obtained after mechanical expansion of the electrospun microfibrous mats. The pore sizes of the scaffolds were controlled by varying the degree of expansion of the nonbonded microfibrous mats, and they were in the range of several microns up to 400 μm. The 3D scaffolds were examined for their morphological properties and their potential use for the proliferation of osteoblasts. Generally recognized electrospun 2D nanofibrous membranes were also tested in order to compare the cell behaviors using different scaffold geometries. The 3D scaffolds demonstrated a high level of osteoblast proliferation (1.8-fold higher than nanofibrous membranes in a week). The osteoblasts actively penetrated the inside of the 3D scaffold and showed a spatial cell distribution, as confirmed by SEM and H&E staining, while a monolayer formed in the case of the 2D nanofibrous membranes with limited cell infiltration. In vivo results further showed that 3D electrospun microfibrous matrices were a favorable substrate for cell infiltration and bone formation after 2 and 4 weeks, using a rabbit calvarial defect model. In this study, the 3D microfibrous PLLA scaffolds fabricated using electrospinning techniques might be an innovative addition to tissue engineering applications.

          Related collections

          Author and article information

          Journal
          J. Biomed. Mater. Res. Part B Appl. Biomater.
          Journal of biomedical materials research. Part B, Applied biomaterials
          Wiley-Blackwell
          1552-4981
          1552-4973
          Oct 2010
          : 95
          : 1
          Affiliations
          [1 ] Department of Pharmacy, College of Pharmacy, Ewha Womans University, Seodaemun-gu, Seoul 120-750, Korea.
          Article
          10.1002/jbm.b.31695
          20725960

          Comments

          Comment on this article