61
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Integrated Consensus Map of Cultivated Peanut and Wild Relatives Reveals Structures of the A and B Genomes of Arachis and Divergence of the Legume Genomes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The complex, tetraploid genome structure of peanut ( Arachis hypogaea) has obstructed advances in genetics and genomics in the species. The aim of this study is to understand the genome structure of Arachis by developing a high-density integrated consensus map. Three recombinant inbred line populations derived from crosses between the A genome diploid species, Arachis duranensis and Arachis stenosperma; the B genome diploid species, Arachis ipaënsis and Arachis magna; and between the AB genome tetraploids, A. hypogaea and an artificial amphidiploid ( A. ipaënsis × A. duranensis) , were used to construct genetic linkage maps: 10 linkage groups (LGs) of 544 cM with 597 loci for the A genome; 10 LGs of 461 cM with 798 loci for the B genome; and 20 LGs of 1442 cM with 1469 loci for the AB genome. The resultant maps plus 13 published maps were integrated into a consensus map covering 2651 cM with 3693 marker loci which was anchored to 20 consensus LGs corresponding to the A and B genomes. The comparative genomics with genome sequences of Cajanus cajan, Glycine max, Lotus japonicus, and Medicago truncatula revealed that the Arachis genome has segmented synteny relationship to the other legumes. The comparative maps in legumes, integrated tetraploid consensus maps, and genome-specific diploid maps will increase the genetic and genomic understanding of Arachis and should facilitate molecular breeding.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          The Medicago Genome Provides Insight into the Evolution of Rhizobial Symbioses

          Legumes (Fabaceae or Leguminosae) are unique among cultivated plants for their ability to carry out endosymbiotic nitrogen fixation with rhizobial bacteria, a process that takes place in a specialized structure known as the nodule. Legumes belong to one of the two main groups of eurosids, the Fabidae, which includes most species capable of endosymbiotic nitrogen fixation 1 . Legumes comprise several evolutionary lineages derived from a common ancestor 60 million years ago (Mya). Papilionoids are the largest clade, dating nearly to the origin of legumes and containing most cultivated species 2 . Medicago truncatula (Mt) is a long-established model for the study of legume biology. Here we describe the draft sequence of the Mt euchromatin based on a recently completed BAC-assembly supplemented with Illumina-shotgun sequence, together capturing ~94% of all Mt genes. A whole-genome duplication (WGD) approximately 58 Mya played a major role in shaping the Mt genome and thereby contributed to the evolution of endosymbiotic nitrogen fixation. Subsequent to the WGD, the Mt genome experienced higher levels of rearrangement than two other sequenced legumes, Glycine max (Gm) and Lotus japonicus (Lj). Mt is a close relative of alfalfa (M. sativa), a widely cultivated crop with limited genomics tools and complex autotetraploid genetics. As such, the Mt genome sequence provides significant opportunities to expand alfalfa’s genomic toolbox.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Genome Structure of the Legume, Lotus japonicus

            The legume Lotus japonicus has been widely used as a model system to investigate the genetic background of legume-specific phenomena such as symbiotic nitrogen fixation. Here, we report structural features of the L. japonicus genome. The 315.1-Mb sequences determined in this and previous studies correspond to 67% of the genome (472 Mb), and are likely to cover 91.3% of the gene space. Linkage mapping anchored 130-Mb sequences onto the six linkage groups. A total of 10 951 complete and 19 848 partial structures of protein-encoding genes were assigned to the genome. Comparative analysis of these genes revealed the expansion of several functional domains and gene families that are characteristic of L. japonicus. Synteny analysis detected traces of whole-genome duplication and the presence of synteny blocks with other plant genomes to various degrees. This study provides the first opportunity to look into the complex and unique genetic system of legumes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers.

              We have used a "two-way pseudo-testcross" mapping strategy in combination with the random amplified polymorphic DNA (RAPD) assay to construct two moderate density genetic linkage maps for species of Eucalyptus. In the cross between two heterozygous individuals many single-dose RAPD markers will be heterozygous in one parent, null in the other and therefore segregate 1:1 in their F1 progeny following a testcross configuration. Meiosis and gametic segregation in each individual can be directly and efficiently analyzed using RAPD markers. We screened 305 primers of arbitrary sequence, and selected 151 to amplify a total of 558 markers. These markers were grouped at LOD 5.0, theta = 0.25, resulting in the maternal Eucalyptus grandis map having a total of 240 markers into 14 linkage groups (1552 cM) and the paternal Eucalyptus urophylla map with 251 markers in 11 linkage groups (1101 cM) (n = 11 in Eucalyptus). Framework maps ordered with a likelihood support > or = 1000:1 were assembled covering 95% of the estimated genome size in both individuals. Characterization of genome complexity of a sample of 48 mapped random amplified polymorphic DNA (RAPD) markers indicate that 53% amplify from low copy regions. These are the first reported high coverage linkage maps for any species of Eucalyptus and among the first for any hardwood tree species. We propose the combined use of RAPD markers and the pseudo-testcross configuration as a general strategy for the construction of single individual genetic linkage maps in outbred forest trees as well as in any highly heterozygous sexually reproducing living organisms. A survey of the occurrence of RAPD markers in different individuals suggests that the pseudo-testcross/RAPD mapping strategy should also be efficient at the intraspecific level and increasingly so with crosses of genetically divergent individuals. The ability to quickly construct single-tree genetic linkage maps in any forest species opens the way for a shift from the paradigm of a species index map to the heterodox proposal of constructing several maps for individual trees of a population, therefore mitigating the problem of linkage equilibrium between marker and trait loci for the application of marker assisted strategies in tree breeding.
                Bookmark

                Author and article information

                Journal
                DNA Res
                DNA Res
                dnares
                dnares
                DNA Research: An International Journal for Rapid Publication of Reports on Genes and Genomes
                Oxford University Press
                1340-2838
                1756-1663
                April 2013
                12 January 2013
                12 January 2013
                : 20
                : 2
                : 173-184
                Affiliations
                [1 ]Kazusa DNA Research Institute , Kisarazu, Chiba, Japan
                [2 ]University of Brasília , Brasília, DF, Brazil
                [3 ]International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) , Patancheru, AP, India
                [4 ]Embrapa Genetic Resources and Biotechnology , Brasília, DF, Brazil
                [5 ]Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR AGAP , F-34398 Montpellier, France
                [6 ]University of Agricultural Sciences (UAS-D) , Dharwad, KA, India
                [7 ]University of Georgia , Tifton, GA, USA
                [8 ]Hubei Academy of Agricultural Sciences (HAAS) , Wuhan, Hubei, China
                [9 ]USDA-Agricultural Research Service , Tifton, GA, USA
                [10 ]Guangdong Academy of Agricultural Sciences (GAAS) , Guangzhou, Guangdong, China
                Author notes
                [* ]To whom correspondence should be addressed. Tel. +81 438-52-3935. Fax. +81 438-52-3934. E-mail: shirasaw@ 123456kazusa.or.jp
                Article
                dss042
                10.1093/dnares/dss042
                3628447
                23315685
                3874a89b-6972-4454-8608-5b69b1097459
                © The Author 2013. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by-nc/3.0/), which permits non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com.

                History
                : 13 October 2012
                : 21 December 2012
                Categories
                Full Papers

                Genetics
                arachis spp.,comparative genomics,genetic linkage map,integrated consensus map,legume genome

                Comments

                Comment on this article