18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Alterations of Growth Factors in Autism and Attention-Deficit/Hyperactivity Disorder

      brief-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Growth factors (GFs) are cytokines that regulate the neural development. Recent evidence indicates that alterations in the expression level of GFs during embryogenesis are linked to the pathophysiology and clinical manifestations of attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorders (ASD). In this concise review, we summarize the current evidence that supports the role of brain-derived neurotrophic factor, insulin-like growth factor 2, hepatocyte growth factor (HGF), glial-derived neurotrophic factor, nerve growth factor, neurotrophins 3 and 4, and epidermal growth factor in the pathogenesis of ADHD and ASD. We also highlight the potential use of these GFs as clinical markers for diagnosis and prognosis of these neurodevelopmental disorders.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: not found
          • Article: not found

          Developmental trajectories of brain volume abnormalities in children and adolescents with attention-deficit/hyperactivity disorder.

          Various anatomic brain abnormalities have been reported for attention-deficit/hyperactivity disorder (ADHD), with varying methods, small samples, cross-sectional designs, and without accounting for stimulant drug exposure. To compare regional brain volumes at initial scan and their change over time in medicated and previously unmedicated male and female patients with ADHD and healthy controls. Case-control study conducted from 1991-2001 at the National Institute of Mental Health, Bethesda, Md, of 152 children and adolescents with ADHD (age range, 5-18 years) and 139 age- and sex-matched controls (age range, 4.5-19 years) recruited from the local community, who contributed 544 anatomic magnetic resonance images. Using completely automated methods, initial volumes and prospective age-related changes of total cerebrum, cerebellum, gray and white matter for the 4 major lobes, and caudate nucleus of the brain were compared in patients and controls. On initial scan, patients with ADHD had significantly smaller brain volumes in all regions, even after adjustment for significant covariates. This global difference was reflected in smaller total cerebral volumes (-3.2%, adjusted F(1,280) = 8.30, P =.004) and in significantly smaller cerebellar volumes (-3.5%, adjusted F(1,280) = 12.29, P =.001). Compared with controls, previously unmedicated children with ADHD demonstrated significantly smaller total cerebral volumes (overall F(2,288) = 6.65; all pairwise comparisons Bonferroni corrected, -5.8%; P =.002) and cerebellar volumes (-6.2%, F( 2,288) = 8.97, P<.001). Unmedicated children with ADHD also exhibited strikingly smaller total white matter volumes (F(2,288) = 11.65) compared with controls (-10.7%, P<.001) and with medicated children with ADHD (-8.9%, P<.001). Volumetric abnormalities persisted with age in total and regional cerebral measures (P =.002) and in the cerebellum (P =.003). Caudate nucleus volumes were initially abnormal for patients with ADHD (P =.05), but diagnostic differences disappeared as caudate volumes decreased for patients and controls during adolescence. Results were comparable for male and female patients on all measures. Frontal and temporal gray matter, caudate, and cerebellar volumes correlated significantly with parent- and clinician-rated severity measures within the ADHD sample (Pearson coefficients between -0.16 and -0.26; all P values were <.05). Developmental trajectories for all structures, except caudate, remain roughly parallel for patients and controls during childhood and adolescence, suggesting that genetic and/or early environmental influences on brain development in ADHD are fixed, nonprogressive, and unrelated to stimulant treatment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Brain growth across the life span in autism: age-specific changes in anatomical pathology.

            Autism is marked by overgrowth of the brain at the earliest ages but not at older ages when decreases in structural volumes and neuron numbers are observed instead. This has led to the theory of age-specific anatomic abnormalities in autism. Here we report age-related changes in brain size in autistic and typical subjects from 12 months to 50 years of age based on analyses of 586 longitudinal and cross-sectional MRI scans. This dataset is several times larger than the largest autism study to date. Results demonstrate early brain overgrowth during infancy and the toddler years in autistic boys and girls, followed by an accelerated rate of decline in size and perhaps degeneration from adolescence to late middle age in this disorder. We theorize that underlying these age-specific changes in anatomic abnormalities in autism, there may also be age-specific changes in gene expression, molecular, synaptic, cellular, and circuit abnormalities. A peak age for detecting and studying the earliest fundamental biological underpinnings of autism is prenatal life and the first three postnatal years. Studies of the older autistic brain may not address original causes but are essential to discovering how best to help the older aging autistic person. Lastly, the theory of age-specific anatomic abnormalities in autism has broad implications for a wide range of work on the disorder including the design, validation, and interpretation of animal model, lymphocyte gene expression, brain gene expression, and genotype/CNV-anatomic phenotype studies. Copyright © 2010 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The neuropathology of autism: defects of neurogenesis and neuronal migration, and dysplastic changes

              Autism is characterized by a broad spectrum of clinical manifestations including qualitative impairments in social interactions and communication, and repetitive and stereotyped patterns of behavior. Abnormal acceleration of brain growth in early childhood, signs of slower growth of neurons, and minicolumn developmental abnormalities suggest multiregional alterations. The aim of this study was to detect the patterns of focal qualitative developmental defects and to identify brain regions that are prone to developmental alterations in autism. Formalin-fixed brain hemispheres of 13 autistic (4–60 years of age) and 14 age-matched control subjects were embedded in celloidin and cut into 200-μm-thick coronal sections, which were stained with cresyl violet and used for neuropathological evaluation. Thickening of the subependymal cell layer in two brains and subependymal nodular dysplasia in one brain is indicative of active neurogenesis in two autistic children. Subcortical, periventricular, hippocampal and cerebellar heterotopias detected in the brains of four autistic subjects (31%) reflect abnormal neuronal migration. Multifocal cerebral dysplasia resulted in local distortion of the cytoarchitecture of the neocortex in four brains (31%), of the entorhinal cortex in two brains (15%), of the cornu Ammonis in four brains and of the dentate gyrus in two brains. Cerebellar flocculonodular dysplasia detected in six subjects (46%), focal dysplasia in the vermis in one case, and hypoplasia in one subject indicate local failure of cerebellar development in 62% of autistic subjects. Detection of flocculonodular dysplasia in only one control subject and of a broad spectrum of focal qualitative neuropathological developmental changes in 12 of 13 examined brains of autistic subjects (92%) reflects multiregional dysregulation of neurogenesis, neuronal migration and maturation in autism, which may contribute to the heterogeneity of the clinical phenotype.
                Bookmark

                Author and article information

                Contributors
                URI : http://frontiersin.org/people/u/436155
                URI : http://frontiersin.org/people/u/297798
                URI : http://frontiersin.org/people/u/317308
                URI : http://frontiersin.org/people/u/65513
                Journal
                Front Psychiatry
                Front Psychiatry
                Front. Psychiatry
                Frontiers in Psychiatry
                Frontiers Media S.A.
                1664-0640
                13 July 2017
                2017
                : 8
                : 126
                Affiliations
                [1] 1Department of Neuroscience, Institute of Translational Neuroscience, Centro Universitario de Ciencias de la Salud, University of Guadalajara , Guadalajara, Mexico
                [2] 2Unidad de Atencion en Neurosciencias, Department of Neuroscience, Centro Universitario de Ciencias de la Salud, University of Guadalajara , Guadalajara, Mexico
                [3] 3Laboratory of Neuroscience, School of Psychology, University of Colima , Colima, Mexico
                [4] 4Medical Science PhD Program, School of Medicine, University of Colima , Colima, Mexico
                [5] 5El Colegio de Colima , Colima, Mexico
                Author notes

                Edited by: Hanna E. Stevens, University of Iowa, United States

                Reviewed by: Didem Oztop, Erciyes University, Turkey; Karen M. Smith, University of Louisiana at Lafayette, United States

                *Correspondence: Alma Y. Galvez-Contreras, alma.galvez@ 123456academicos.udg.mx

                Specialty section: This article was submitted to Child and Adolescent Psychiatry, a section of the journal Frontiers in Psychiatry

                Article
                10.3389/fpsyt.2017.00126
                5507945
                28751869
                387fc896-0c6d-4708-8bec-32a047c975df
                Copyright © 2017 Galvez-Contreras, Campos-Ordonez, Gonzalez-Castaneda and Gonzalez-Perez.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 02 May 2017
                : 29 June 2017
                Page count
                Figures: 1, Tables: 1, Equations: 0, References: 86, Pages: 8, Words: 6188
                Funding
                Funded by: Consejo Nacional de Ciencia y Tecnología 10.13039/501100003141
                Award ID: PN 2015-01-465, INFR280414, Red Temática Células Troncales y Medicina Regenerativa No. 271609, and Fellowship grant No. 736339
                Categories
                Psychiatry
                Perspective

                Clinical Psychology & Psychiatry
                biomarker,developmental disorders,autism spectrum disorder,attention-deficit/hyperactivity disorder,growth factors,cytokines,cerebral cortex,cognitive impairment

                Comments

                Comment on this article