1
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Integrated Analysis Reveals the Characteristics and Effects of SARS-CoV-2 Maternal–Fetal Transmission

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has caused a pandemic of coronavirus disease 2019 (COVID-19) and is threatening global health. SARS-CoV-2 spreads by air with a transmission rate of up to 15%, but the probability of its maternal–fetal transmission through the placenta is reported to be low at around 3.28%. However, it is still unclear that which tissues and developmental periods hold higher risks and what the underlying molecular mechanisms are. We conducted an integrated analysis of large-scale transcriptome and single-cell sequencing data to investigate the key factors that affect SARS-CoV-2 maternal–fetal transmission as well as the characteristics and effects of them. Our results showed that the abundance of cytomegalovirus (CMV) and Zika virus (ZIKV) infection-associated factors in the placenta were higher than their primarily infected tissues, while the expression levels of SARS-CoV-2 binding receptor angiotensin-converting enzyme II (ACE2) were similar between lung and placenta. By contrast, an important SARS-CoV-2 infection-associated factor, type II transmembrane serine protease (TMPRSS2), was poorly expressed in placenta. Further scRNA-Seq analysis revealed that ACE2 and TMPRSS2 were co-expressed in very few trophoblastic cells. Interestingly, during the embryonic development stages, the abundance of ACE2 and TMPRSS2 was much higher in multiple embryonic tissues than in the placenta. Based on our present analysis, the intestine in 20th week of embryonic development was at a high risk of SARS-CoV-2 infection. Additionally, we found that during the fetal development, ACE2 and TMPRSS2 were enriched in pathogen infection-associated pathways and may involve in the biological processes related to T-cell activation. In conclusion, our present study suggests that though the placenta provides a good physical barrier against SARS-CoV-2 infection for healthy fetal development, multiple embryonic tissues are under risks of the virus infection, which may be adversely affected once infected prenatally. Therefore, it is necessary to enhance maternal care to prevent the potential impact and harm of SARS-CoV-2 maternal–fetal transmission.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Structural basis of receptor recognition by SARS-CoV-2

          Summary A novel SARS-like coronavirus (SARS-CoV-2) recently emerged and is rapidly spreading in humans 1,2 . A key to tackling this epidemic is to understand the virus’s receptor recognition mechanism, which regulates its infectivity, pathogenesis and host range. SARS-CoV-2 and SARS-CoV recognize the same receptor - human ACE2 (hACE2) 3,4 . Here we determined the crystal structure of SARS-CoV-2 receptor-binding domain (RBD) (engineered to facilitate crystallization) in complex of hACE2. Compared with SARS-CoV RBD, a hACE2-binding ridge in SARS-CoV-2 RBD takes a more compact conformation; moreover, several residue changes in SARS-CoV-2 RBD stabilize two virus-binding hotspots at the RBD/hACE2 interface. These structural features of SARS-CoV-2 RBD enhance its hACE2-binding affinity. Additionally, we showed that RaTG13, a bat coronavirus closely related to SARS-CoV-2, also uses hACE2 as its receptor. The differences among SARS-CoV-2, SARS-CoV and RaTG13 in hACE2 recognition shed light on potential animal-to-human transmission of SARS-CoV-2. This study provides guidance for intervention strategies targeting receptor recognition by SARS-CoV-2.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records

            Summary Background Previous studies on the pneumonia outbreak caused by the 2019 novel coronavirus disease (COVID-19) were based on information from the general population. Limited data are available for pregnant women with COVID-19 pneumonia. This study aimed to evaluate the clinical characteristics of COVID-19 in pregnancy and the intrauterine vertical transmission potential of COVID-19 infection. Methods Clinical records, laboratory results, and chest CT scans were retrospectively reviewed for nine pregnant women with laboratory-confirmed COVID-19 pneumonia (ie, with maternal throat swab samples that were positive for severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) who were admitted to Zhongnan Hospital of Wuhan University, Wuhan, China, from Jan 20 to Jan 31, 2020. Evidence of intrauterine vertical transmission was assessed by testing for the presence of SARS-CoV-2 in amniotic fluid, cord blood, and neonatal throat swab samples. Breastmilk samples were also collected and tested from patients after the first lactation. Findings All nine patients had a caesarean section in their third trimester. Seven patients presented with a fever. Other symptoms, including cough (in four of nine patients), myalgia (in three), sore throat (in two), and malaise (in two), were also observed. Fetal distress was monitored in two cases. Five of nine patients had lymphopenia (<1·0 × 10⁹ cells per L). Three patients had increased aminotransferase concentrations. None of the patients developed severe COVID-19 pneumonia or died, as of Feb 4, 2020. Nine livebirths were recorded. No neonatal asphyxia was observed in newborn babies. All nine livebirths had a 1-min Apgar score of 8–9 and a 5-min Apgar score of 9–10. Amniotic fluid, cord blood, neonatal throat swab, and breastmilk samples from six patients were tested for SARS-CoV-2, and all samples tested negative for the virus. Interpretation The clinical characteristics of COVID-19 pneumonia in pregnant women were similar to those reported for non-pregnant adult patients who developed COVID-19 pneumonia. Findings from this small group of cases suggest that there is currently no evidence for intrauterine infection caused by vertical transmission in women who develop COVID-19 pneumonia in late pregnancy. Funding Hubei Science and Technology Plan, Wuhan University Medical Development Plan.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Extrapulmonary manifestations of COVID-19

              Although COVID-19 is most well known for causing substantial respiratory pathology, it can also result in several extrapulmonary manifestations. These conditions include thrombotic complications, myocardial dysfunction and arrhythmia, acute coronary syndromes, acute kidney injury, gastrointestinal symptoms, hepatocellular injury, hyperglycemia and ketosis, neurologic illnesses, ocular symptoms, and dermatologic complications. Given that ACE2, the entry receptor for the causative coronavirus SARS-CoV-2, is expressed in multiple extrapulmonary tissues, direct viral tissue damage is a plausible mechanism of injury. In addition, endothelial damage and thromboinflammation, dysregulation of immune responses, and maladaptation of ACE2-related pathways might all contribute to these extrapulmonary manifestations of COVID-19. Here we review the extrapulmonary organ-specific pathophysiology, presentations and management considerations for patients with COVID-19 to aid clinicians and scientists in recognizing and monitoring the spectrum of manifestations, and in developing research priorities and therapeutic strategies for all organ systems involved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                27 January 2022
                2022
                27 January 2022
                : 13
                : 813187
                Affiliations
                [1] 1MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University , Guangzhou, China
                [2] 2Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University , Guangzhou, China
                Author notes

                Edited by: Caterina Guzmán-Verri, National University of Costa Rica, Costa Rica

                Reviewed by: Mark Parcells, University of Delaware, United States; Zhenhai Zhang, Southern Medical University, China; Guan Daogang, Southern Medical University, China

                *Correspondence: Lingling Zheng, zhengll33@ 123456mail.sysu.edu.cn

                This article was submitted to Infectious Agents and Disease, a section of the journal Frontiers in Microbiology

                These authors have contributed equally to this work and share first authorship

                Article
                10.3389/fmicb.2022.813187
                8828581
                38a394f1-241b-43fb-9f48-cc7dfe891424
                Copyright © 2022 Huang, Xia, Mei, Wen, Liu, Dong, Chen, Yu, Qu, Luo and Zheng.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 11 November 2021
                : 04 January 2022
                Page count
                Figures: 7, Tables: 0, Equations: 0, References: 39, Pages: 12, Words: 6275
                Funding
                Funded by: National Key R&D Program of China
                Award ID: 2017YFA0504400
                Funded by: National Natural Science Foundation of China , doi 10.13039/501100001809;
                Award ID: 31771459
                Award ID: 82071657
                Funded by: Guangdong Province
                Award ID: 2021A1515010542
                Funded by: Pearl River S&T Nova Program of Guangzhou , doi 10.13039/501100009334;
                Award ID: 201806010151
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                covid-19,sars-cov-2,maternal–fetal transmission,placenta,fetal development,integrated analysis

                Comments

                Comment on this article