42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Role of pulmonary microvascular endothelial cell apoptosis in murine sepsis-induced lung injury in vivo

      research-article
      , ,
      Respiratory Research
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Sepsis remains a common and serious condition with significant morbidity and mortality due to multiple organ dysfunction, especially acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Sepsis-induced ALI is characterized by injury and dysfunction of the pulmonary microvasculature and pulmonary microvascular endothelial cells (PMVEC), resulting in enhanced pulmonary microvascular sequestration and pulmonary infiltration of polymorphonuclear leukocytes (PMN) as well as disruption of the normal alveolo-capillary permeability barrier with leak of albumin-rich edema fluid into pulmonary interstitium and alveoli. The role of PMVEC death and specifically apoptosis in septic pulmonary microvascular dysfunction in vivo has not been established.

          Methods

          In a murine cecal ligation/perforation (CLP) model of sepsis, we quantified and correlated time-dependent changes in pulmonary microvascular Evans blue (EB)-labeled albumin permeability with (1) PMVEC death (propidium iodide [PI]-staining) by both fluorescent intravital videomicroscopy (IVVM) and histology, and (2) PMVEC apoptosis using histologic fluorescent microscopic assessment of a panel of 3 markers: cell surface phosphatidylserine (detected by Annexin V binding), caspase activation (detected by FLIVO labeling), and DNA fragmentation (TUNEL labeling).

          Results

          Compared to sham mice, CLP-sepsis resulted in pulmonary microvascular barrier dysfunction, quantified by increased EB-albumin leak, and PMVEC death (PI+ staining) as early as 2 h and more marked by 4 h after CLP. Septic PMVEC also exhibited increased presence of all 3 markers of apoptosis (Annexin V+, FLIVO+, TUNEL+) as early as 30 mins – 1 h after CLP-sepsis, which all similarly increased markedly until 4 h. The time-dependent changes in septic pulmonary microvascular albumin-permeability barrier dysfunction were highly correlated with PMVEC death (PI+; r = 0.976, p < 0.01) and PMVEC apoptosis (FLIVO+; r = 0.991, p < 0.01). Treatment with the pan-caspase inhibitor Q-VD prior to CLP reduced PMVEC death/apoptosis and attenuated septic pulmonary microvascular dysfunction, including both albumin-permeability barrier dysfunction and pulmonary microvascular PMN sequestration ( p < 0.05). Septic PMVEC apoptosis and pulmonary microvascular dysfunction were also abrogated following CLP-sepsis in mice deficient in iNOS ( Nos2 −/− ) or NADPH oxidase ( p47 phox−/− or gp91 phox−/− ) and in wild-type mice treated with the NADPH oxidase inhibitor, apocynin.

          Conclusions

          Septic murine pulmonary microvascular dysfunction in vivo is due to PMVEC death, which is mediated through caspase-dependent apoptosis and iNOS/NADPH-oxidase dependent signaling.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Acute lung injury and the acute respiratory distress syndrome: a clinical review.

          Acute respiratory distress syndrome and acute lung injury are well defined and readily recognised clinical disorders caused by many clinical insults to the lung or because of predispositions to lung injury. That this process is common in intensive care is well established. The mainstay of treatment for this disorder is provision of excellent supportive care since these patients are critically ill and frequently have coexisting conditions including sepsis and multiple organ failure. Refinements in ventilator and fluid management supported by data from prospective randomised trials have increased the methods available to effectively manage this disorder.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sepsis: current dogma and new perspectives.

            Sepsis, a clinical syndrome occurring in patients following infection or injury, is a leading cause of morbidity and mortality worldwide. Current immunological mechanisms do not explain the basis of cellular dysfunction and organ failure, the ultimate cause of death. Here we review current dogma and argue that it is time to delineate novel immunometabolic and neurophysiological mechanisms underlying the altered cellular bioenergetics and failure of epithelial and endothelial barriers that produce organ dysfunction and death. These mechanisms might hold the key to future therapeutic strategies. Copyright © 2014 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The pathogenesis of sepsis.

              Sepsis is a serious clinical condition that represents a patient's response to a severe infection and has a very high mortality rate. Normal immune and physiologic responses eradicate pathogens, and the pathophysiology of sepsis is due to the inappropriate regulation of these normal reactions. In an ideal scenario, the first pathogen contact with the inflammatory system should eliminate the microbe and quickly return the host to homeostasis. The septic response may accelerate due to continued activation of neutrophils and macrophages/monocytes. Upregulation of lymphocyte costimulatory molecules and rapid lymphocyte apoptosis, delayed apoptosis of neutrophils, and enhanced necrosis of cells/tissues also contribute to the pathogenesis of sepsis. The coagulation system is closely tied to the inflammatory response, with cross talk between the two systems driving the dysregulated response. Biomarkers may be used to help diagnose patients with sepsis, and they may also help to identify patients who would benefit from immunomodulatory therapies.
                Bookmark

                Author and article information

                Contributors
                (519)-667-6723 , Sanjay.Mehta@lhsc.on.ca
                Journal
                Respir Res
                Respir. Res
                Respiratory Research
                BioMed Central (London )
                1465-9921
                1465-993X
                16 September 2015
                16 September 2015
                2015
                : 16
                : 1
                : 109
                Affiliations
                [ ]Centre for Critical Illness Research, Lawson Health Research Institute, London Health Sciences Center, London, ON Canada
                [ ]Division of Respirology, Schulich School of Medicine and Dentistry, Western University, London, ON Canada
                [ ]Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON Canada
                [ ]Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON Canada
                [ ]Division of Respirology, E6.204, London Health Sciences Center – Victoria Hospital, 800 Commissioners Road East, London, ON N6A 5W9 Canada
                Article
                266
                10.1186/s12931-015-0266-7
                4574190
                26376777
                38a4c301-64ac-40cc-b80d-11e02629d747
                © Gill et al. 2015

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 18 June 2015
                : 24 August 2015
                Categories
                Research
                Custom metadata
                © The Author(s) 2015

                Respiratory medicine
                Respiratory medicine

                Comments

                Comment on this article