+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ultra-low jitter clock distribution for the trigger electronics of the New Small Wheel for the ATLAS experiment


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          The Large Hadron Collider (LHC) at CERN plans to have a series of upgrades to increase its instantaneous luminosity to 7.5 the nominal luminosity. The increased luminosity drastically impacts the ATLAS trigger and readout data rates. The inner-most station of the ATLAS muon spectrometer, the so-called Small Wheels is being replaced with a New Small Wheel (NSW) system, consisting of Micromegas and small-strip Thin Gap Chambers (sTGC) detectors. The on-detector radiation levels required radiation tolerant electronics. The lower radiation levels on the rim of the NSW allowed utilizing commercial electronic chips, such as Field Programmable Gate Arrays (FPGAs), in the trigger chain of the sTGC detectors. Those FPGAs require an ultra-low jitter clock for the proper operation of their Gigabit transceivers (4.8 Gbps serial links). The initial design was based on a clock provided by a radiation tolerant ASIC designed at CERN, but due to its intrinsic jitter and consequent marginal error rate on the transmission lines, a different approach had to be chosen. An additional clock source based on commercial jitter cleaners, fan-out chips and optical transmitters driving dedicated fibers was built. The new scheme provides 64 low-jitter clocks (32 main and redundant) from the radiation-protected area (USA15) to the trigger electronics over 60 m of OM3 fiber.

          Related collections

          Author and article information

          25 October 2021


          Custom metadata
          physics.ins-det hep-ex

          High energy & Particle physics, Technical & Applied physics


          Comment on this article