24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dominant negative connexin26 mutation R75W causing severe hearing loss influences normal programmed cell death in postnatal organ of Corti

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The greater epithelial ridge (GER) is a developmental structure in the maturation of the organ of Corti. Situated near the inner hair cells of neonatal mice, the GER undergoes a wave of apoptosis after postnatal day 8 (P8). We evaluated the GER from P8 to P12 in transgenic mice that carry the R75W + mutation, a dominant-negative mutation of human gap junction protein, beta 2, 26 kDa ( GJB2) (also known as connexin 26 or CX26). Cx26 facilitate intercellular communication within the mammalian auditory organ.

          Results

          In both non-transgenic (non-Tg) and R75W + mice, some GER cells exhibited apoptotic characteristics at P8. In the GER of non-Tg mice, both the total number of cells and the number of apoptotic cells decreased from P8 to P12. In contrast, apoptotic cells were still clearly evident in the GER of R75W + mice at P12. In R75W + mice, therefore, apoptosis in the GER persisted until a later stage of cochlear development. In addition, the GER of R75W + mice exhibited morphological signs of retention, which may have resulted from diminished levels of apoptosis and/or promotion of cell proliferation during embryogenesis and early postnatal stages of development.

          Conclusions

          Here we demonstrate that Cx26 dysfunction is associated with delayed apoptosis of GER cells and GER retention. This is the first demonstration that Cx26 may regulate cell proliferation and apoptosis during development of the cochlea.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Overexpression of Math1 induces robust production of extra hair cells in postnatal rat inner ears.

          For mammalian cochlear hair cells, fate determination is normally completed by birth. We report here that overexpression of Math1, a mouse homolog of the Drosophila gene atonal, in postnatal rat cochlear explant cultures resulted in extra hair cells. Surprisingly, we found that the source of the ectopic hair cells was columnar epithelial cells located outside the sensory epithelium in the greater epithelial ridge, which normally give rise to inner sulcus cells. Moreover, Math1 expression also facilitated conversion of postnatal utricular supporting cells into hair cells. Thus Math1 was sufficient for the production of hair cells in the ear, and immature postnatal mammalian inner ears retained the competence to generate new hair cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cell-cell communication in carcinogenesis.

            To explain the complex carcinogenic process by which a single normal cell in human beings can be converted to an invasive and metastatic cancer cell, a number of experimental findings, epidemiological observations and their associated hypothesis/theories have been integrated in this review. All cancers have been generally viewed as the result of a disruption of the homeostatic regulation of a cell's ability to respond appropriately to extra-cellular signals of the body which trigger intra-cellular signal transducting mechanisms which modulate gap junctional intercellular communication between the cells within a tissue. Normal homeostatic control of these three forms of cell communication determines whether: (a) the cell remains quiescent (Go); (b) enters into the cell proliferation phase; (c) is induced to differentiate; (d) is committed to apoptose; or (e) if it is already differentiated, it can adaptively respond. During the evolution from single cell organisms to multicellular organisms, new cellular/biological functions appeared, namely, the control of cell proliferation ("contact inhibition"), the appearance of the process of differentiation from committed stem cells of the various tissues and the need for programmed cell death or apoptosis. Interestingly, cancer cells have been characterized as cells: (a) having been derived from a stem-like cell; (b) without their ability to control cell growth or without the ability to contact inhibit; (c) which can not terminally differentiate under normal conditions; and (d) having altered ability to apoptosis under normal conditions. During that evolutionary transition from the single cell organism to the multicellular organism, many new genes appeared to accompany these new cellular functions. One of these new genes was the gene coding for a membrane associated protein channel (the gap junction) which between coupled cells, allowed the passive transfer on ions and small molecular weight molecules. A family of over a dozen of these highly evolutionarily-conserved genes (the connexin genes) coded for the connexin proteins. A hexameric unit of these connexins in one cell (a connexon) couples with a corresponding connexon in a contiguous cell to join the cytoplasms. This serves to synchronize either the metabolic or electrotonic functions of cells within a tissue. Most normal cells within solid tissues have functional gap junctional intercellular communication (GJIC) (exceptions are free-standing cells such as red blood cells, neutrophils, and several, if not all, the stem cells). On the other hand, the cancer cells of solid tissues appear to have either dysfunctional homologous or heterologous GJIC. Therefore, among the many differences between a cancer cell and its normal parental cell, the carcinogenic process involves the transition from a normal, GJIC-competent cell to one that is defective in GJIC. The review examines how GJIC can be either transiently or stably modulated by endogenous or exogenesis chemicals or by oncogenes and tumor suppressor genes at the transcriptional, translational, or posttranslational levels. It also uses the gap junction as the biological structure to facilitate cellular/tissue homeostasis to be the integrator for the "stem cell" theory, "disease of differentiation theory", "initiation/promotion/progression" concepts, nature and nurture concept of carcinogenesis, the mutation/ epigenetic theories of carcinogenesis, and the oncogene/ tumor suppressor gene theories of carcinogenesis. From this background, implications to cancer prevention and cancer therapy are generated.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The role of connexins in ear and skin physiology - functional insights from disease-associated mutations.

              Defects in several different connexins have been associated with several different diseases. The most common of these is deafness, where a few mutations in connexin (Cx) 26 have been found to contribute to over 50% of the incidence of non-syndromic deafness in different human populations. Other mutations in Cx26 or Cx30 have also been associated with various skin phenotypes linked to deafness (palmoplanta keratoderma, Bart-Pumphrey syndrome, Vohwinkel syndrome, keratitis-ichthyosis-deafness syndrome, etc.). The large array of disease mutants offers unique opportunities to gain insights into the underlying function of gap junction proteins and their channels in the normal and pathogenic physiologies of the cochlea and epidermis. This review focuses on those mutants where the impact on channel function has been assessed, and correlated with the disease phenotype, or organ function in knock-out mouse models. These approaches have provided evidence supporting a role of gap junctions and hemichannels in K(+) removal and recycling in the ear, as well as possible roles for nutrient passage, in the cochlea. In contrast, increases in hemichannel opening leading to increased cell death, were associated with several keratitis-ichthyosis-deafness syndrome skin disease/hearing mutants. In addition to providing clues for therapeutic strategies, these findings allow us to better understand the specific functions of connexin channels that are important for normal tissue function. This article is part of a Special Issue entitled: The communicating junctions, roles and dysfunctions. Copyright © 2012 Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Journal
                BMC Genet
                BMC Genet
                BMC Genetics
                BioMed Central
                1471-2156
                2014
                3 January 2014
                : 15
                : 1
                Affiliations
                [1 ]Department of Otorhinolaryngology, Juntendo University Faculty of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8431, Japan
                Article
                1471-2156-15-1
                10.1186/1471-2156-15-1
                3893426
                24387126
                38b606c7-252b-45a8-a30d-93dacf3f5956
                Copyright © 2014 Inoshita et al.; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 11 March 2013
                : 30 December 2013
                Categories
                Research Article

                Genetics
                apoptosis,hereditary hearing loss,greater epithelial ridge,organ of corti,gjb2,mouse
                Genetics
                apoptosis, hereditary hearing loss, greater epithelial ridge, organ of corti, gjb2, mouse

                Comments

                Comment on this article