34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Pulmonary Surfactant: Impact of Tobacco Smoke and Related Compounds on Surfactant and Lung Development

      review-article
      1 ,
      Tobacco Induced Diseases
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cigarette smoking, one of the most pervasive habits in society, presents many well established health risks. While lung cancer is probably the most common and well documented disease associated with tobacco exposure, it is becoming clear from recent research that many other diseases are causally related to smoking. Whether from direct smoking or inhaling environmental tobacco smoke (ETS), termed secondhand smoke, the cells of the respiratory tissues and the lining pulmonary surfactant are the first body tissues to be directly exposed to the many thousands of toxic chemicals in tobacco. Considering the vast surface area of the lung and the extreme attenuation of the blood-air barrier, it is not surprising that this organ is the primary route for exposure, not just to smoke but to most environmental contaminants. Recent research has shown that the pulmonary surfactant, a complex mixture of phospholipids and proteins, is the first site of defense against particulates or gas components of smoke. However, it is not clear what effect smoke has on the surfactant. Most studies have demonstrated that smoking reduces bronchoalveolar lavage phospholipid levels. Some components of smoke also appear to have a direct detergent-like effect on the surfactant while others appear to alter cycling or secretion. Ultimately these effects are reflected in changes in the dynamics of the surfactant system and, clinically in changes in lung mechanics. Similarly, exposure of the developing fetal lung through maternal smoking results in postnatal alterations in lung mechanics and higher incidents of wheezing and coughing. Direct exposure of developing lung to nicotine induces changes suggestive of fetal stress. Furthermore, identification of nicotinic receptors in fetal lung airways and corresponding increases in airway connective tissue support a possible involvement of nicotine in postnatal asthma development. Finally, at the level of the alveoli of the lung, colocalization of nicotinic receptors and surfactant-specific protein in alveolar cells is suggestive of a role in surfactant metabolism. Further research is needed to determine the mechanistic effects of smoke and its components on surfactant function and, importantly, the effects of smoke components on the developing pulmonary system.

          Related collections

          Most cited references245

          • Record: found
          • Abstract: found
          • Article: not found

          Free-radical chemistry of cigarette smoke and its toxicological implications.

          Cigarette smoke contains two very different populations of free radicals, one in the tar and one in the gas phase. The tar phase contains several relatively stable free radicals; we have identified the principal radical as a quinone/hydroquinone (Q/QH2) complex held in the tarry matrix. We suggest that this Q/QH2 polymer is an active redox system that is capable of reducing molecular oxygen to produce superoxide, eventually leading to hydrogen peroxide and hydroxyl radicals. In addition, we have shown that the principal radical in tar reacts with DNA in vitro, possibly by covalent binding. The gas phase of cigarette smoke contains small oxygen- and carbon-centered radicals that are much more reactive than are the tar-phase radicals. These gas-phase radicals do not arise in the flame, but rather are produced in a steady state by the oxidation of NO to NO2, which then reacts with reactive species in smoke such as isoprene. We suggest that these radicals and the metastable products derived from these radical reactions may be responsible for the inactivation of alpha 1-proteinase inhibitor by fresh smoke. Cigarette smoke oxidizes thiols to disulfides; we suggest the active oxidants are NO and NO2. The effects of smoke on lipid peroxidation are complex, and this is discussed. We also discuss the toxicological implications for the radicals in smoke in terms of a number of radical-mediated disease processes, including emphysema and cancer.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Smoking and carcinoma of the lung; preliminary report.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The propulsion of mucus by cilia.

              The presence of cilia on epithelia of the respiratory tract was reported more than 150 yr ago, and the two-layer model of mucus transport was put forward more than 50 yr ago. However, it is only in the last 10 yr or so that the motion of mucus-propelling cilia of the mammalian respiratory system has been adequately described, and fluid dynamic studies have developed far enough to allow descriptions of the mechanisms by which ciliary movement is coupled to mucus transport. In this review, scientific developments on the study of cilia and mucus, and interactions between them, are drawn together to further understanding of mucociliary clearance mechanisms of the respiratory tract. The study of the cilia incorporates a discussion of the internal mechanics and biochemistry of the ciliary axoneme, the physical principles of the beat pattern, and the (weak) metachronal coordination of cilia in the lung. Mucus rheology plays a central role in mucociliary transport with the rheologic properties of the mucus determining the effective functioning of this clearance mechanism. Theoretical models provide information on the mechanical principles of the beat pattern as well as providing reliable estimates of the transport rates. Although airflow is not thought to contribute to mucus transport in the normal state, high frequency ventilation and coughing may make significant contributions.
                Bookmark

                Author and article information

                Journal
                Tob Induc Dis
                Tobacco Induced Diseases
                BioMed Central
                2070-7266
                1617-9625
                2004
                15 March 2004
                : 2
                : 1
                : 3-25
                Affiliations
                [1 ]Lung Development Section, Biology of Breathing Group, Manitoba Institute of Child Health & Departments of Oral Biology and Anatomy, Faculties of Dentistry and Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
                Article
                1617-9625-2-1-3
                10.1186/1617-9625-2-1-3
                2671518
                19570267
                38bf85f7-5450-4fbd-aedf-0de7bb68659a
                Copyright © 2004 Scott; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Categories
                Review

                Respiratory medicine
                Respiratory medicine

                Comments

                Comment on this article