Blog
About

17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Multifunctional nanoparticles co-delivering Trp2 peptide and CpG adjuvant induce potent cytotoxic T-lymphocyte response against melanoma and its lung metastasis.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Immunotherapy has shown the potential to become an essential component of the successful treatment of various malignancies. In many cases, such as in melanoma, however, induction of a potent and specific T-cell response against the endogenous antigen or self-antigen still remains a major challenge. To induce a potent MHC I-restricted cytotoxic T-lymphocyte (CTL) response, cytosol delivery of an exogenous antigen into dendritic cells is preferred, if not required. Lipid-calcium-phosphate (LCP) nanoparticles represent a new class of intracellular delivery systems for impermeable drugs. We are interested in exploring the potential of LCP NPs for use as a peptide vaccine delivery system for cancer therapy. To increase the encapsulation of Trp2 peptide into the calcium phosphate precipitate core of LCP, two phosphor-serine residues were added to the N-terminal of the peptide (p-Trp2). CpG ODN was also co-encapsulated with p-Trp2 as an adjuvant. The NPs were further modified with mannose to enhance and prolong the cargo deposit into the lymph nodes (LNs), which ensured persistent antigen loading and stimulation. Compared with free Trp2 peptide/CpG, vaccination with LCP encapsulating p-Trp2 and CpG resulted in superior inhibition of tumor growth in both B16F10 subcutaneous and lung metastasis models. An IFN-γ production assay and in vivo CTL response study revealed that the improved efficacy was a result of a Trp2-specific immune response. Thus, encapsulation of phospho-peptide antigens into LCP may be a promising strategy for enhancing the immunogenicity of poorly immunogenic self-antigens for cancer therapy.

          Related collections

          Author and article information

          Journal
          J Control Release
          Journal of controlled release : official journal of the Controlled Release Society
          1873-4995
          0168-3659
          Nov 28 2013
          : 172
          : 1
          Affiliations
          [1 ] Division of Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
          Article
          S0168-3659(13)00480-X
          10.1016/j.jconrel.2013.08.021
          24004885
          © 2013.

          Comments

          Comment on this article