3
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Unraveling the genetic complexity of a cultivated breeding population of “yerba mate” (Ilex paraguariensis St. Hil.)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract We report the first comprehensive multilocus molecular characterization of cultivated Ilex paraguariensis plants belonging to a breeding program. Using nuclear and homologous chloroplastidic molecular markers, we have genotyped 158 plants from four plantation sites. Analyses of the nuclear data (187 variable dominant loci) allowed detecting high diversity (0.569), the occurrence of four distinct genetic clusters, and a low but significant differentiation among sites. Additionally, 20 chloroplastidic alleles were identified applying five microsatellite polymorphic markers, and a high chloroplastidic diversity was recognized (0.505); two haplogroups were distinguished amongst the 63 haplotypes detected. Our results from both nuclear and plastidic markers indicate that most genetic variation reside within plantations sites (≥ 95%), and that these plantations were established on highly variable materials (either as seeds or plantlets) derived from, at least, 63 maternal lineages. Moreover, our study suggests that the genetic structure within each plantation site was most likely shaped by past admixture favored by farmers´ practices during the establishment of each plantation. Also, subsequent constraints in gene flow and/or a low level of shared polymorphism among plantations could have contributed to current structure.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Estimation of average heterozygosity and genetic distance from a small number of individuals.

          M Nei (1978)
          The magnitudes of the systematic biases involved in sample heterozygosity and sample genetic distances are evaluated, and formulae for obtaining unbiased estimates of average heterozygosity and genetic distance are developed. It is also shown that the number of individuals to be used for estimating average heterozygosity can be very small if a large number of loci are studied and the average heterozygosity is low. The number of individuals to be used for estimating genetic distance can also be very small if the genetic distance is large and the average heterozygosity of the two species compared is low.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification.

            Simple sequence repeats (SSR), or microsatellites, are ubiquitous in eukaryotic genomes. Here we demonstrate the utility of microsatellite-directed DNA fingerprinting by polymerase chain reaction (PCR) amplification of the interrepeat region. No sequencing is required to design the oligonucleotide primers. We tested primers anchored at 3' or 5' termini of the (CA)n repeats, extended into the flanking sequence by 2 to 4 nucleotide residues [3'-anchored primers: (CA)8RG, (CA)8RY, and (CA)7RTCY; and 5'-anchored primers: BDB(CA)7C, DBDA(CA)7, VHVG(TG)7 and HVH(TG)7T]. Radioactively labeled amplification products were analyzed by electrophoresis, revealing information on multiple genomic loci in a single gel lane. Complex, species-specific patterns were obtained from a variety of eukaryotic taxa. Intraspecies polymorphisms were also observed and shown to segregate as Mendelian markers. Inter-SSR PCR provides a novel fingerprinting approach applicable for taxonomic and phylogenetic comparisons and as a mapping tool in a wide range of organisms. This application of (CA)n repeats may be extended to different microsatellites and other common dispersed elements.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chloroplast microsatellites: new tools for studies in plant ecology and evolution.

              The nonrecombinant, uniparentally inherited nature of organelle genomes makes them useful tools for evolutionary studies. However, in plants, detecting useful polymorphism at the population level is often difficult because of the low level of substitutions in the chloroplast genome, and because of the slow substitution rates and intramolecular recombination of mtDNA. Chloroplast microsatellites represent potentially useful markers to circumvent this problem and, to date, studies have demonstrated high levels of intraspecific variability. Here, we discuss the use of these markers in ecological and evolutionary studies of plants, as well as highlighting some of the potential problems associated with such use.
                Bookmark

                Author and article information

                Journal
                aabc
                Anais da Academia Brasileira de Ciências
                An. Acad. Bras. Ciênc.
                Academia Brasileira de Ciências (Rio de Janeiro, RJ, Brazil )
                0001-3765
                1678-2690
                2020
                : 92
                : 1
                : e20190113
                Affiliations
                [4] Misiones orgnamePindo S.A. Argentina
                [2] orgnameUniversidad de Buenos Aires orgdiv1Facultad de Ciencias Exactas y Naturales orgdiv2Departamento de Ecología Argentina
                [3] Ciudad Autónoma de Buenos Aires orgnameConsejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Argentina
                [1] Misiones orgnameInstituto Nacional de Tecnología Agropecuaria (EEA-INTA Montecarlo) orgdiv1Estación Experimental Agropecuaria Montecarlo Argentina
                Article
                S0001-37652020000100717 S0001-3765(20)09200100717
                10.1590/0001-3765202020190113
                38d9dfa7-2bd2-469c-a7e5-d1b92e88cfc6

                This work is licensed under a Creative Commons Attribution 4.0 International License.

                History
                : 31 January 2019
                : 26 May 2019
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 58, Pages: 0
                Product

                SciELO Brazil

                Categories
                Biological Sciences

                genotyping,chloroplastidic microsatellites,genetic diversity,ISSR markers

                Comments

                Comment on this article