122
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An Overview of Selenium Uptake, Metabolism, and Toxicity in Plants

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Selenium (Se) is an essential micronutrient for humans and animals, but lead to toxicity when taken in excessive amounts. Plants are the main source of dietary Se, but essentiality of Se for plants is still controversial. However, Se at low doses protects the plants from variety of abiotic stresses such as cold, drought, desiccation, and metal stress. In animals, Se acts as an antioxidant and helps in reproduction, immune responses, thyroid hormone metabolism. Selenium is chemically similar to sulfur, hence taken up inside the plants via sulfur transporters present inside root plasma membrane, metabolized via sulfur assimilatory pathway, and volatilized into atmosphere. Selenium induced oxidative stress, distorted protein structure and function, are the main causes of Se toxicity in plants at high doses. Plants can play vital role in overcoming Se deficiency and Se toxicity in different regions of the world, hence, detailed mechanism of Se metabolism inside the plants is necessary for designing effective Se phytoremediation and biofortification strategies.

          Related collections

          Most cited references129

          • Record: found
          • Abstract: found
          • Article: not found

          Selenium: biochemical role as a component of glutathione peroxidase.

          When hemolyzates from erythrocytes of selenium-deficient rats were incubated in vitro in the presence of ascorbate or H(2)O(2), added glutathione failed to protect the hemoglobin from oxidative damage. This occurred because the erythrocytes were practically devoid of glutathione-peroxidase activity. Extensively purified preparations of glutathione peroxidase contained a large part of the (75)Se of erythrocytes labeled in vivo. Many of the nutritional effects of selenium can be explained by its role in glutathione peroxidase.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Roots of the Second Green Revolution

            The Green Revolution boosted crop yields in developing nations by introducing dwarf genotypes of wheat and rice capable of responding to fertilisation without lodging. We now need a second Green Revolution, to improve the yield of crops grown in infertile soils by farmers with little access to fertiliser, who represent the majority of third-world farmers. Just as the Green Revolution was based on crops responsive to high soil fertility, the second Green Revolution will be based on crops tolerant of low soil fertility. Substantial genetic variation in the productivity of crops in infertile soil has been known for over a century. In recent years we have developed a better understanding of the traits responsible for this variation. Root architecture is critically important by determining soil exploration and therefore nutrient acquisition. Architectural traits under genetic control include basal-root gravitropism, adventitious-root formation and lateral branching. Architectural traits that enhance topsoil foraging are important for acquisition of phosphorus from infertile soils. Genetic variation in the length and density of root hairs is important for the acquisition of immobile nutrients such as phosphorus and potassium. Genetic variation in root cortical aerenchyma formation and secondary development (‘root etiolation’) are important in reducing the metabolic costs of root growth and soil exploration. Genetic variation in rhizosphere modification through the efflux of protons, organic acids and enzymes is important for the mobilisation of nutrients such as phosphorus and transition metals, and the avoidance of aluminum toxicity. Manipulation of ion transporters may be useful for improving the acquisition of nitrate and for enhancing salt tolerance. With the noteworthy exceptions of rhizosphere modification and ion transporters, most of these traits are under complex genetic control. Genetic variation in these traits is associated with substantial yield gains in low-fertility soils, as illustrated by the case of phosphorus efficiency in bean and soybean. In breeding crops for low-fertility soils, selection for specific root traits through direct phenotypic evaluation or molecular markers is likely to be more productive than conventional field screening. Crop genotypes with greater yield in infertile soils will substantially improve the productivity and sustainability of low-input agroecosystems, and in high-input agroecosystems will reduce the environmental impacts of intensive fertilisation. Although the development of crops with reduced fertiliser requirements has been successful in the few cases it has been attempted, the global scientific effort devoted to this enterprise is small, especially considering the magnitude of the humanitarian, environmental and economic benefits being forgone. Population growth, ongoing soil degradation and increasing costs of chemical fertiliser will make the second Green Revolution a priority for plant biology in the 21st century.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              SELENIUM IN HIGHER PLANTS.

              Plants vary considerably in their physiological response to selenium (Se). Some plant species growing on seleniferous soils are Se tolerant and accumulate very high concentrations of Se (Se accumulators), but most plants are Se nonaccumulators and are Se-sensitive. This review summarizes knowledge of the physiology and biochemistry of both types of plants, particularly with regard to Se uptake and transport, biochemical pathways of assimilation, volatilization and incorporation into proteins, and mechanisms of toxicity and tolerance. Molecular approaches are providing new insights into the role of sulfate transporters and sulfur assimilation enzymes in selenate uptake and metabolism, as well as the question of Se essentiality in plants. Recent advances in our understanding of the plant's ability to metabolize Se into volatile Se forms (phytovolatilization) are discussed, along with the application of phytoremediation for the cleanup of Se contaminated environments.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                11 January 2017
                2016
                : 7
                : 2074
                Affiliations
                Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia New Delhi, India
                Author notes

                Edited by: Prabodh Kumar Trivedi, National Botanical Research Institute (CSIR), India

                Reviewed by: Sudhakar Srivastava, Banaras Hindu University, India; Seema Mishra, National Botanical Research Institute (CSIR), India

                This article was submitted to Plant Traffic and Transport, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2016.02074
                5225104
                28123395
                38e51f08-7deb-4a04-8da3-adced7ccfbe5
                Copyright © 2017 Gupta and Gupta.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 13 October 2016
                : 29 December 2016
                Page count
                Figures: 6, Tables: 1, Equations: 0, References: 157, Pages: 14, Words: 11158
                Funding
                Funded by: Council of Scientific and Industrial Research 10.13039/501100001412
                Categories
                Plant Science
                Review

                Plant science & Botany
                selenium,toxicity,sulfate transporters,phytoremediation,biofortification,oxidative stress

                Comments

                Comment on this article