29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mosaic structure of intragenic repetitive elements in histone H1-like protein Hc2 varies within serovars of Chlamydia trachomatis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The histone-like protein Hc2 binds DNA in Chlamydia trachomatis and is known to vary in size between 165 and 237 amino acids, which is caused by different numbers of lysine-rich pentamers. A more complex structure was seen in this study when sequences from 378 specimens covering the hctB gene, which encodes Hc2, were compared.

          Results

          This study shows that the size variation is due to different numbers of 36-amino acid long repetitive elements built up of five pentamers and one hexamer. Deletions and amino acid substitutions result in 14 variants of repetitive elements and these elements are combined into 22 configurations. A protein with similar structure has been described in Bordetella but was now also found in other genera, including Burkholderia, Herminiimonas, Minibacterium and Ralstonia.

          Sequence determination resulted in 41 hctB variants that formed four clades in phylogenetic analysis. Strains causing the eye disease trachoma and strains causing invasive lymphogranuloma venereum infections formed separate clades, while strains from urogenital infections were more heterogeneous. Three cases of recombination were identified. The size variation of Hc2 has previously been attributed to deletions of pentamers but we show that the structure is more complex with both duplication and deletions of 36-amino acid long elements.

          Conclusions

          The polymorphisms in Hc2 need to be further investigated in experimental studies since DNA binding is essential for the unique biphasic life cycle of the Chlamydiacae. The high sequence variation in the corresponding hctB gene enables phylogenetic analysis and provides a suitable target for the genotyping of C. trachomatis.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: not found
          • Article: not found

          PHYLOGENY ESTIMATION AND HYPOTHESIS TESTING USING MAXIMUM LIKELIHOOD

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Multi locus sequence typing of Chlamydiales: clonal groupings within the obligate intracellular bacteria Chlamydia trachomatis

            Background The obligate intracellular growing bacterium Chlamydia trachomatis causes diseases like trachoma, urogenital infection and lymphogranuloma venereum with severe morbidity. Several serovars and genotypes have been identified, but these could not be linked to clinical disease or outcome. The related Chlamydophila pneumoniae, of which no subtypes are recognized, causes respiratory infections worldwide. We developed a multi locus sequence typing (MLST) scheme to understand the population genetic structure and diversity of these species and to evaluate the association between genotype and disease. Results A collection of 26 strains of C. trachomatis of different serovars and clinical presentation and 18 strains of C. pneumoniae were included in the study. For comparison, sequences of C. abortus, C. psittaci, C. caviae, C. felis, C. pecorum (Chlamydophila), C. muridarum (Chlamydia) and of Candidatus protochlamydia and Simkania negevensis were also included. Sequences of fragments (400 – 500 base pairs) from seven housekeeping genes (enoA, fumC, gatA, gidA, hemN, hlfX, oppA) were analysed. Analysis of allelic profiles by eBurst revealed three non-overlapping clonal complexes among the C. trachomatis strains, while the C. pneumoniae strains formed a single group. An UPGMA tree produced from the allelic profiles resulted in three groups of sequence types. The LGV strains grouped in a single cluster, while the urogenital strains were distributed over two separated groups, one consisted solely of strains with frequent occurring serovars (E, D and F). The distribution of the different serovars over the three groups was not consistent, suggesting exchange of serovar encoding ompA sequences. In one instance, exchange of fumC sequences between strains of different groups was observed. Cluster analyses of concatenated sequences of the Chlamydophila and Chlamydia species together with those of Candidatus Protochlamydia amoebophila and Simkania negevensis resulted in a tree identical to that obtained with 23S RNA gene sequences. Conclusion These data show that C. trachomatis and C. pneumoniae are highly uniform. The difference in genetic diversity between C. trachomatis and C. pneumoniae is in concordance with a later assimilation to the human host of the latter. Our data supports the taxonomy of the order of Chlamydiales.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              High-resolution genotyping of Chlamydia trachomatis strains by multilocus sequence analysis.

              Genotyping of Chlamydia trachomatis is limited by the low sequence variation in the genome, and no adequate method is available for analysis of the spread of chlamydial infections in the community. We have developed a multilocus sequence typing (MLST) system based on five target regions and compared it with analysis of ompA, the single gene most extensively used for genotyping. Sequence determination of 16 reference strains, comprising all major serotypes, serotypes A to L3, showed that the number of genetic variants in the five separate target regions ranged from 8 to 16. The genetic variation in 47 clinical C. trachomatis isolates of representative serotypes (14 serotype D, 12 serotype E, 11 serotype G, and 10 serotype K strains) was analyzed; and the MLST system detected 32 variants, whereas 12 variants were detected by using ompA analysis. Specimens of the predominant serotype, serotype E, were differentiated into seven genotypes by MLST but into only two by ompA analysis. The MLST system was applied to C. trachomatis specimens from a population of men who have sex with men and was able to differentiate 10 specimens of one predominant ompA genotype G variant into four distinct MLST variants. To conclude, our MLST system can be used to discriminate C. trachomatis strains and can be applied to high-resolution molecular epidemiology.
                Bookmark

                Author and article information

                Journal
                BMC Microbiol
                BMC Microbiology
                BioMed Central
                1471-2180
                2010
                17 March 2010
                : 10
                : 81
                Affiliations
                [1 ]Department of Clinical Microbiology, Uppsala University, Uppsala, Sweden
                [2 ]Department of Evolution, Genomics and Systematics, Uppsala University, Uppsala, Sweden
                [3 ]Linnaeus Centre for Bioinformatics, Uppsala University, Uppsala, Sweden
                [4 ]Department of Medical Microbiology and Immunology, Aarhus University, Aarhus, Denmark
                Article
                1471-2180-10-81
                10.1186/1471-2180-10-81
                2848022
                20236532
                38e93dc6-f062-429f-84ca-c7fa750dba34
                Copyright ©2010 Klint et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 13 August 2009
                : 17 March 2010
                Categories
                Research article

                Microbiology & Virology
                Microbiology & Virology

                Comments

                Comment on this article