11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Integrin beta8 (ITGB8) activates VAV-RAC1 signaling via FAK in the acquisition of endometrial epithelial cell receptivity for blastocyst implantation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Integrin beta8 (ITGB8) is involved in the endometrial receptivity. The blastocyst first interacts with the luminal endometrial epithelial cells during its implantation; therefore, we have investigated the signaling of ITGB8 via FAK and VAV-RAC1 in the endometrial epithelial cells. Integrin beta8 was found elevated in epithelial cells at late-pre-receptive (day4, 1600 h) and receptive (day5, 0500 h) stages of endometrial receptivity period in the mouse. Integrins downstream molecule FAK has demonstrated an increased expression and phosphorylation (Y397) in the endometrium as well as in the isolated endometrial epithelial cells during receptive and post-receptive stages. Integrin beta8 can functionally interact with FAK, VAV and RAC1 as the levels of phosphorylated-FAK, and VAV along with the RAC-GTP form was reduced after ITGB8 knockdown in the endometrial epithelial cells and uterus. Further, VAV and RAC1 were seen poorly active in the absence of FAK activity, suggesting a crosstalk of ITGB8 and FAK for VAV and RAC1 activation in the endometrial epithelial cells. Silencing of ITGB8 expression and inhibition of FAK activity in the Ishikawa cells rendered poor attachment of JAr spheroids. In conclusion, ITGB8 activates VAV-RAC1 signaling axis via FAK to facilitate the endometrial epithelial cell receptivity for the attachment of blastocyst.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Focal adhesion kinase: the first ten years.

          J Parsons (2003)
          The protein tyrosine kinase focal adhesion kinase (FAK) plays a prominent role in integrin signaling. FAK activation, demonstrated by an increase in phosphorylation of Tyr397 as well as other sites in the protein, is best understood in the context of the engagement of integrins at the cell surface. Activation of FAK results in recruitment of a number of SH2-domain- and SH3-domain-containing proteins, which mediate signaling to several downstream pathways. FAK-dependent activation of these pathways has been implicated in a diverse array of cellular processes, including cell migration, growth factor signaling, cell cycle progression and cell survival.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Focal adhesion kinase signaling activities and their implications in the control of cell survival and motility.

            Focal adhesion kinase (FAK) was first described in 1992 as a novel nonreceptor protein-tyrosine kinase localized prominently within focal adhesions, suggesting a signaling role in regulating cell behavior resulting from integrin interaction with the extracellular matrix. Subsequent studies over the past decade have established functional roles for FAK as a positive regulator of both cell motility and cell survival, while providing considerable insight into signaling mechanisms involved. FAK signaling results from its ability to become highly phosphorylated in response to integrin-mediated adhesion on Tyr-397, permitting interactions with a number of different signaling effectors containing Src homology 2 (SH2) domains. Src-family kinases recruited to the Tyr-397 site phosphorylate two FAK-interacting proteins, Crk-associated substrate (CAS) and paxillin, which results ultimately in regulation of Rho-family GTPases contributing to cell motility. CAS phosphorylation, as well as phosphatidylinositol 3-kinase (PI3K) activation resulting from its binding to the FAK Tyr-397 site, have been implicated as downstream FAK signaling events that confer a resistance to apoptosis. This article reviews these and other aspects of FAK signaling and function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Deciphering the cross-talk of implantation: advances and challenges.

              Implantation involves a series of steps leading to an effective reciprocal signaling between the blastocyst and the uterus. Except for a restricted period when ovarian hormones induce a uterine receptive phase, the uterus is an unfavorable environment for blastocyst implantation. Because species-specific variations in implantation strategies exist, these differences preclude the formulation of a unifying theme for the molecular basis of this event. However, an increased understanding of mammalian implantation has been gained through the use of the mouse model. This review summarizes recognized signaling cascades and new research in mammalian implantation, based primarily on available genetic and molecular evidence from implantation studies in the mouse. Although the identification of new molecules associated with implantation in various species provides valuable insight, important questions remain regarding the common molecular mechanisms that govern this process. Understanding the mechanisms of implantation promises to help alleviate infertility, enhance fetal health, and improve contraceptive design. The success of any species depends on its reproductive efficiency. For sexual reproduction, an egg and sperm must overcome many obstacles to fuse and co-mingle their genetic material at fertilization. The zygote develops into a blastocyst with two cell lineages (the inner cell mass and the trophectoderm), migrates within the reproductive tract, and ultimately implants into a transiently permissive host tissue, the uterus. However, the molecular basis of the road map connecting the blastocyst with the endometrium across species is diverse (1) and not fully understood. Recent advances have identified numerous molecules involved in implantation (1-4), yet new discoveries have not yielded a unifying scheme for the mechanisms of implantation.
                Bookmark

                Author and article information

                Contributors
                rajesh_jha@cdri.res.in
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                15 May 2017
                15 May 2017
                2017
                : 7
                : 1885
                Affiliations
                [1 ]ISNI 0000 0004 0506 6543, GRID grid.418363.b, Division of Endocrinology, , CSIR-Central Drug Research Institute, ; Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031 U.P. India
                [2 ]ISNI 0000 0001 2287 8816, GRID grid.411507.6, Department of Molecular & Human Genetics, , Banaras Hindu University (BHU), ; Varanasi, UP India
                Article
                1764
                10.1038/s41598-017-01764-7
                5432530
                28507287
                38ef12c3-995c-467f-9afa-45881d810ed3
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 18 November 2016
                : 6 April 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article