29
views
0
recommends
+1 Recommend
2 collections
    0
    shares

      The APC waiver has been extended to also apply to manuscripts submitted until March 31, 2024.

      To submit to the journal, please click here.

      • Record: found
      • Abstract: found
      • Article: found

      Is the Campylobacter jejuni secretory protein Cj0069 a suitable antigen for serodiagnostics?

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Campylobacter spp. is the most common bacterial pathogen of gastroenteritis worldwide. Poultry is the main reservoir and consequently the main origin of infections for humans. As a consequence of a primary Campylobacter infection which typically manifests as diarrhea, there is an increased risk to suffer from post-infectious complications such as reactive arthritis, neuropathia, myositis or a Guillain-Barré Syndrome. Usually the verification of acute campylobacteriosis is made by stool culture. In contrast, post-infectious complications can be diagnosed by serological assays. Since most of them are based on whole cell lysates, an insufficient specificity results from cross-reactions between related species. Therefore, the use of recombinant antigens becomes more and more favorable. Campylobacter is able to secrete a number of proteins, which are amongst others necessary for cell invasion and therefore play a crucial role for virulence. One of these, Cj0069, has a similar specificity and sensitivity in the detection of anti- Campylobacter jejuni IgG compared to the well-established antigens OMP18 and P39. This makes it a suitable antigen for diagnosing C. jejuni post-infectious complications.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences.

          Campylobacter jejuni, from the delta-epsilon group of proteobacteria, is a microaerophilic, Gram-negative, flagellate, spiral bacterium-properties it shares with the related gastric pathogen Helicobacter pylori. It is the leading cause of bacterial food-borne diarrhoeal disease throughout the world. In addition, infection with C. jejuni is the most frequent antecedent to a form of neuromuscular paralysis known as Guillain-Barré syndrome. Here we report the genome sequence of C. jejuni NCTC11168. C. jejuni has a circular chromosome of 1,641,481 base pairs (30.6% G+C) which is predicted to encode 1,654 proteins and 54 stable RNA species. The genome is unusual in that there are virtually no insertion sequences or phage-associated sequences and very few repeat sequences. One of the most striking findings in the genome was the presence of hypervariable sequences. These short homopolymeric runs of nucleotides were commonly found in genes encoding the biosynthesis or modification of surface structures, or in closely linked genes of unknown function. The apparently high rate of variation of these homopolymeric tracts may be important in the survival strategy of C. jejuni.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Multilocus sequence typing system for Campylobacter jejuni.

            The gram-negative bacterium Campylobacter jejuni has extensive reservoirs in livestock and the environment and is a frequent cause of gastroenteritis in humans. To date, the lack of (i) methods suitable for population genetic analysis and (ii) a universally accepted nomenclature has hindered studies of the epidemiology and population biology of this organism. Here, a multilocus sequence typing (MLST) system for this organism is described, which exploits the genetic variation present in seven housekeeping loci to determine the genetic relationships among isolates. The MLST system was established using 194 C. jejuni isolates of diverse origins, from humans, animals, and the environment. The allelic profiles, or sequence types (STs), of these isolates were deposited on the Internet (http://mlst.zoo.ox.ac.uk), forming a virtual isolate collection which could be continually expanded. These data indicated that C. jejuni is genetically diverse, with a weakly clonal population structure, and that intra- and interspecies horizontal genetic exchange was common. Of the 155 STs observed, 51 (26% of the isolate collection) were unique, with the remainder of the collection being categorized into 11 lineages or clonal complexes of related STs with between 2 and 56 members. In some cases membership in a given lineage or ST correlated with the possession of a particular Penner HS serotype. Application of this approach to further isolate collections will enable an integrated global picture of C. jejuni epidemiology to be established and will permit more detailed studies of the population genetics of this organism.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A new pathway for the secretion of virulence factors by bacteria: the flagellar export apparatus functions as a protein-secretion system.

              Biogenesis of the flagellum, a motive organelle of many bacterial species, is best understood for members of the Enterobacteriaceae. The flagellum is a heterooligomeric structure that protrudes from the surface of the cell. Its assembly initially involves the synthesis of a dedicated protein export apparatus that subsequently transports other flagellar proteins by a type III mechanism from the cytoplasm to the outer surface of the cell, where oligomerization occurs. In this study, the flagellum export apparatus was shown to function also as a secretion system for the transport of several extracellular proteins in the pathogenic bacterium Yersinia enterocolitica. One of the proteins exported by the flagellar secretion system was the virulence-associated phospholipase, YplA. These results suggest type III protein secretion by the flagellar system may be a general mechanism for the transport of proteins that influence bacterial-host interactions.
                Bookmark

                Author and article information

                Journal
                1886
                122234
                European Journal of Microbiology and Immunology
                EuJMI
                Akadémiai Kiadó, co-published with Springer Science+Business Media B.V., Formerly Kluwer Academic Publishers B.V.
                2062-509X
                2062-8633
                1 March 2011
                : 1
                : 1
                : 86-94
                Affiliations
                [ 1 ] Abteilung für Medizinische Mikrobiologie, Universitätsmedizin Göttingen, Kreuzbergring 57, D-37075, Göttingen, Germany
                Author notes
                [* ] +49-551-395857, +49-551-395861, azautne@ 123456gwdg.de
                Article
                11
                10.1556/eujmi.1.2011.1.11
                38f65454-b9f3-442b-9ec5-20f56e6eb87e
                History
                Categories
                Original Articles

                Medicine,Immunology,Health & Social care,Microbiology & Virology,Infectious disease & Microbiology
                Campylobacter jejuni ,serodiagnostics,Cj0069,P39,OMP18,campylobacteriosis,arthritis,Guillain-Barré syndrome

                Comments

                Comment on this article