7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The relaxin peptide family--structure, function and clinical applications.

      Protein and Peptide Letters
      Amino Acid Sequence, Animals, Humans, Molecular Sequence Data, Receptors, G-Protein-Coupled, metabolism, Receptors, Peptide, Relaxin, chemical synthesis, chemistry, therapeutic use

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The relaxin peptide family in humans consists of seven members, relaxin-1, -2 and -3 and insulin-like (INSL) peptides 3, 4, 5 and 6. It is an offshoot of the large insulin superfamily. Each member consists of two chains, commonly referred to as A and B, which are held together by two inter-chain disulfide bonds and another intra-chain disulfide bond present within the A chain. The cysteine residues present in each chain, together with the distinctive disulfide bonding pattern, are conserved across all members of the superfamily. The chemical synthesis of these complex peptides poses a significant challenge. In the past, random combination of the two synthetic S-reduced chains under oxidizing conditions was utilized to form the three disulfide bonds. Nowadays, with the aid of highly efficient solid phase peptide synthesis methodologies, in conjunction with selective S-thiol-protecting groups, combination of individual A- and B- chains by sequential chemical formation of each of the three disulfide bonds is now possible resulting in good yields of these peptides. The relaxin peptide family members bind to G-protein coupled receptors (GPCRs) which have been classified as relaxin family peptide (RXFP) receptors. The various unique receptor-ligand interactions are outlined in this review, together with the physiological roles of the relaxin peptide family members and lastly their past and present clinical applications.

          Related collections

          Author and article information

          Comments

          Comment on this article