9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Expression of ankyrin repeat and SOCS box containing 4 (ASB4) confers migration and invasion properties of hepatocellular carcinoma cells.

      Bioscience trends
      3' Untranslated Regions, genetics, Ankyrin Repeat, Cell Line, Tumor, Cell Movement, physiology, Humans, MicroRNAs, Suppressor of Cytokine Signaling Proteins, metabolism, alpha-Fetoproteins

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ankyrin repeat and SOCS box containing 4 (ASB4) involves in physiological process of ubiquitin-mediated proteasomal degradation. Our previous study demonstrated high expression of ASB4 in hepatocellular carcinoma (HCC) cell lines. This study further reveals its clinical implications and tumorigenic properties in HCC. Analysis of 217 HCC gene expression profiles followed by validation in a separate cohort of 50 cases illustrated high ASB4 in HCC. Among the 50 cases, 54% of tumors exhibited more than 2-fold up-regulation of ASB4. Elevated ASB4 associated with low serum level of a HCC serological marker alpha-fetoprotein (AFP), postulating of its use to differentiate AFP-negative HCC. Suppression of ASB4 in PLC and MHCC97-L HCC cells hindered the cell migration and invasion. Reciprocally, enhanced migration rate was measured when ASB4 was ectopically expressed in Hep3B HCC cells. Cross comparison of results derived from in silico predictions of seed-matched sequences and by analyzing human HCC databases with matched microRNA and gene expression profiles, microRNA-200 (miR-200) family members including miR-200a and miR-200b were predicted to regulate ASB4 expression in HCC. MiR-200a showed inversed expression level with ASB4 in several of studied HCC cell lines. Dual luciferase reporter assay confirmed the presence of miR-200a binding site on the 3' untranslated region of ASB4. Reduced ASB4 level was noticed under the influence of miR-200a mimic treatment, for which this mimic-induced effect was neutralized with miR-200a inhibitor. In conclusion, this study demonstrates for the first time on the involvement of ASB4 in HCC and that its level is regulated by miR-200a.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          The long and short of microRNA.

          MicroRNAs (miRNAs) are versatile regulators of gene expression in higher eukaryotes. In order to silence many different mRNAs in a precise manner, miRNA stability and efficacy is controlled by highly developed regulatory pathways and fine-tuning mechanisms both affecting miRNA processing and altering mature miRNA target specificity. Copyright © 2013 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MicroRNAs in liver disease.

            Small, noncoding microRNAs (miRNAs) regulate diverse biological functions in the liver and increasing evidence suggests that they have a role in liver pathology. This Review summarizes advances in the field of miRNAs in liver diseases, inflammation and cirrhosis. MicroRNA-122, the most abundant miRNA in hepatocytes, has well-defined roles in HCV replication, and data indicate that it also serves as a viable therapeutic target. The role of miR-122 is also emerging in other liver diseases. Ample evidence exists for the important regulatory potential of other miRNAs in conditions associated with liver inflammation related to alcohol use, the metabolic syndrome or autoimmune processes. In addition, a broad array of miRNAs have been associated with the development of liver fibrosis both in animal models and human studies. The significance of the function and cellular distribution of miRNAs in the liver and the potential of miRNAs as a means of communication between cells and organs is discussed as well as the emerging utility of circulating miRNAs as biomarkers of different forms of liver damage and as early markers of disease and progression in hepatocellular carcinoma. Importantly, miRNA modulation in the liver represents a new therapeutic approach in the treatment armamentarium of hepatologists in the future.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Whole-genome sequencing identifies recurrent mutations in hepatocellular carcinoma

              Hepatocellular carcinoma (HCC) is one of the most deadly cancers worldwide and has no effective treatment, yet the molecular basis of hepatocarcinogenesis remains largely unknown. Here we report findings from a whole-genome sequencing (WGS) study of 88 matched HCC tumor/normal pairs, 81 of which are Hepatitis B virus (HBV) positive, seeking to identify genetically altered genes and pathways implicated in HBV-associated HCC. We find beta-catenin to be the most frequently mutated oncogene (15.9%) and TP53 the most frequently mutated tumor suppressor (35.2%). The Wnt/beta-catenin and JAK/STAT pathways, altered in 62.5% and 45.5% of cases, respectively, are likely to act as two major oncogenic drivers in HCC. This study also identifies several prevalent and potentially actionable mutations, including activating mutations of Janus kinase 1 ( JAK1 ), in 9.1% of patients and provides a path toward therapeutic intervention of the disease.
                Bookmark

                Author and article information

                Comments

                Comment on this article