5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Estimated GFR: time for a critical appraisal

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Since 1957, over 70 equations based on creatinine and/or cystatin C levels have been developed to estimate glomerular filtration rate (GFR). However, whether these equations accurately reflect renal function is debated. In this Perspectives article, we discuss >70 studies that compared estimated GFR (eGFR) with measured GFR (mGFR), involving ~40,000 renal transplant recipients and patients with chronic kidney disease (CKD), type 2 diabetes mellitus or polycystic kidney disease. Their results show that eGFR often differed from mGFR by ±30% or more, that eGFR values incorrectly staged CKD in 30-60% of patients, and that eGFR and mGFR gave different rates of GFR decline. Errors were unpredictable, and comparable for equations based on creatinine and/or cystatin C. We argue, therefore, that the persistence of these errors (despite intensive research) suggests that the problem lies with using creatinine and/or cystatin C as markers of renal function, rather than with the mathematical methods used for GFR estimation.

          Related collections

          Most cited references 105

          • Record: found
          • Abstract: found
          • Article: not found

          A concordance correlation coefficient to evaluate reproducibility.

           Aigu L. Lin (1989)
          A new reproducibility index is developed and studied. This index is the correlation between the two readings that fall on the 45 degree line through the origin. It is simple to use and possesses desirable properties. The statistical properties of this estimate can be satisfactorily evaluated using an inverse hyperbolic tangent transformation. A Monte Carlo experiment with 5,000 runs was performed to confirm the estimate's validity. An application using actual data is given.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Estimating GFR using serum cystatin C alone and in combination with serum creatinine: a pooled analysis of 3,418 individuals with CKD.

            Serum cystatin C was proposed as a potential replacement for serum creatinine in glomerular filtration rate (GFR) estimation. We report the development and evaluation of GFR-estimating equations using serum cystatin C alone and serum cystatin C, serum creatinine, or both with demographic variables. Test of diagnostic accuracy. Participants screened for 3 chronic kidney disease (CKD) studies in the United States (n = 2,980) and a clinical population in Paris, France (n = 438). Measured GFR (mGFR). Estimated GFR using the 4 new equations based on serum cystatin C alone, serum cystatin C, serum creatinine, or both with age, sex, and race. New equations were developed by using linear regression with log GFR as the outcome in two thirds of data from US studies. Internal validation was performed in the remaining one third of data from US CKD studies; external validation was performed in the Paris study. GFR was measured by using urinary clearance of iodine-125-iothalamate in the US studies and chromium-51-EDTA in the Paris study. Serum cystatin C was measured by using Dade-Behring assay, standardized serum creatinine values were used. Mean mGFR, serum creatinine, and serum cystatin C values were 48 mL/min/1.73 m(2) (5th to 95th percentile, 15 to 95), 2.1 mg/dL, and 1.8 mg/L, respectively. For the new equations, coefficients for age, sex, and race were significant in the equation with serum cystatin C, but 2- to 4-fold smaller than in the equation with serum creatinine. Measures of performance in new equations were consistent across the development and internal and external validation data sets. Percentages of estimated GFR within 30% of mGFR for equations based on serum cystatin C alone, serum cystatin C, serum creatinine, or both levels with age, sex, and race were 81%, 83%, 85%, and 89%, respectively. The equation using serum cystatin C level alone yields estimates with small biases in age, sex, and race subgroups, which are improved in equations including these variables. Study population composed mainly of patients with CKD. Serum cystatin C level alone provides GFR estimates that are nearly as accurate as serum creatinine level adjusted for age, sex, and race, thus providing an alternative GFR estimate that is not linked to muscle mass. An equation including serum cystatin C level in combination with serum creatinine level, age, sex, and race provides the most accurate estimates.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Recommendations for improving serum creatinine measurement: a report from the Laboratory Working Group of the National Kidney Disease Education Program.

               G. Myers (2006)
              Reliable serum creatinine measurements in glomerular filtration rate (GFR) estimation are critical to ongoing global public health efforts to increase the diagnosis and treatment of chronic kidney disease (CKD). We present an overview of the commonly used methods for the determination of serum creatinine, method limitations, and method performance in conjunction with the development of analytical performance criteria. Available resources for standardization of serum creatinine measurement are discussed, and recommendations for measurement improvement are given. The National Kidney Disease Education Program (NKDEP) Laboratory Working Group reviewed problems related to serum creatinine measurement for estimating GFR and prepared recommendations to standardize and improve creatinine measurement. The NKDEP Laboratory Working Group, in collaboration with international professional organizations, has developed a plan that enables standardization and improved accuracy (trueness) of serum creatinine measurements in clinical laboratories worldwide that includes the use of the estimating equation for GFR based on serum creatinine concentration that was developed from the Modification of Diet in Renal Disease (MDRD) study. The current variability in serum creatinine measurements renders all estimating equations for GFR, including the MDRD Study equation, less accurate in the normal and slightly increased range of serum creatinine concentrations [<133 micromol/L (1.5 mg/dL)], which is the relevant range for detecting CKD [<60 mL.min(-1).(1.73 m2)(-1)]. Many automated routine methods for serum creatinine measurement meet or exceed the required precision; therefore, reduction of analytical bias in creatinine assays is needed. Standardization of calibration does not correct for analytical interferences (nonspecificity bias). The bias and nonspecificity problems associated with some of the routine methods must be addressed.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Nephrology
                Nat Rev Nephrol
                Springer Nature
                1759-5061
                1759-507X
                December 5 2018
                Article
                10.1038/s41581-018-0080-9
                30518813
                © 2018

                Comments

                Comment on this article