Blog
About

  • Record: found
  • Abstract: found
  • Article: not found

REST: a mammalian silencer protein that restricts sodium channel gene expression to neurons.

Cell

Zinc Fingers, Amino Acid Sequence, Animals, Cell Differentiation, Cell Nucleus, metabolism, Cloning, Molecular, Embryonic and Fetal Development, Gene Expression Regulation, In Situ Hybridization, Mice, Molecular Sequence Data, Nervous System, embryology, Neurons, Organ Specificity, Recombinant Proteins, biosynthesis, Repressor Proteins, genetics, Saccharomyces cerevisiae, Sequence Homology, Amino Acid, Sodium Channels, Transcription Factors

Read this article at

ScienceOpenPubMed
Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      Expression of the type II voltage-dependent sodium channel gene is restricted to neurons by a silencer element active in nonneuronal cells. We have cloned cDNA coding for a transcription factor (REST) that binds to this silencer element. Expression of a recombinant REST protein confers the ability to silence type II reporter genes in neuronal cell types lacking the native REST protein, whereas expression of a dominant negative form of REST in nonneuronal cells relieves silencing mediated by the native protein. REST transcripts in developing mouse embryos are detected ubiquitously outside of the nervous system. We propose that expression of the type II sodium channel gene in neurons reflects a default pathway that is blocked in nonneuronal cells by the presence of REST.

      Related collections

      Most cited references 27

      • Record: found
      • Abstract: not found
      • Article: not found

      Cleavage of structural proteins during the assembly of the head of bacteriophage T4.

       U K Laemmli (1970)
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei.

        We have developed a procedure for preparing extracts from nuclei of human tissue culture cells that directs accurate transcription initiation in vitro from class II promoters. Conditions of extraction and assay have been optimized for maximum activity using the major late promoter of adenovirus 2. The extract also directs accurate transcription initiation from other adenovirus promoters and cellular promoters. The extract also directs accurate transcription initiation from class III promoters (tRNA and Ad 2 VA).
          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier.

          A method, using LiAc to yield competent cells, is described that increased the efficiency of genetic transformation of intact cells of Saccharomyces cerevisiae to more than 1 X 10(5) transformants per microgram of vector DNA and to 1.5% transformants per viable cell. The use of single stranded, or heat denaturated double stranded, nucleic acids as carrier resulted in about a 100 fold higher frequency of transformation with plasmids containing the 2 microns origin of replication. Single stranded DNA seems to be responsible for the effect since M13 single stranded DNA, as well as RNA, was effective. Boiled carrier DNA did not yield any increased transformation efficiency using spheroplast formation to induce DNA uptake, indicating a difference in the mechanism of transformation with the two methods.
            Bookmark

            Author and article information

            Journal
            7697725

            Comments

            Comment on this article