7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Low salivary testosterone levels in patients with breast cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Correlation between circulating sex steroid levels and breast cancer has been controversial, with measurement of free, or bioavailable hormone rarely available. Salivary hormone levels represent the bioavailable fraction. To further elucidate the role of endogenous hormones in breast cancer, we aimed to assess correlation between salivary sex steroid levels and breast cancer prevalence.

          Methods

          Salivary hormone levels of testosterone (T), Estradiol (E2), Progesterone (P), Estriol (E3), Estrone (E1), DHEAS and Cortisol (C) were measured by Enzyme Immunoassay (EIA) in 357 women with histologically verified breast cancer and 184 age-matched control women.

          Results

          Salivary T and DHEAS levels were significantly lower in breast cancer cases vs. controls (27.2+13.9 vs. 32.2+17.5 pg/ml, p < 0.001 for T and 5.3+4.3 vs. 6.4+4.5 ng/ml, p = 0.007 for DHEAS). E2 and E1 levels were elevated and E3 levels were lowered in cases vs. controls.

          Conclusions

          Salivary T levels, representing the bioavailable hormone, are significantly lower in women with breast cancer compared to age-matched control women. These findings support the protective role of biovailable testosterone in counteracting the proliferative effects of estrogens on mammary tissue.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Body mass index, serum sex hormones, and breast cancer risk in postmenopausal women.

          Obesity is associated with increased breast cancer risk among postmenopausal women. We examined whether this association could be explained by the relationship of body mass index (BMI) with serum sex hormone concentrations. We analyzed individual data from eight prospective studies of postmenopausal women. Data on BMI and prediagnostic estradiol levels were available for 624 case subjects and 1669 control subjects; data on the other sex hormones were available for fewer subjects. The relative risks (RRs) with 95% confidence intervals (CIs) of breast cancer associated with increasing BMI were estimated by conditional logistic regression on case-control sets, matched within each study for age and recruitment date, and adjusted for parity. All statistical tests were two-sided. Breast cancer risk increased with increasing BMI (P(trend) =.002), and this increase in RR was substantially reduced by adjustment for serum estrogen concentrations. Adjusting for free estradiol reduced the RR for breast cancer associated with a 5 kg/m2 increase in BMI from 1.19 (95% CI = 1.05 to 1.34) to 1.02 (95% CI = 0.89 to 1.17). The increased risk was also substantially reduced after adjusting for other estrogens (total estradiol, non-sex hormone-binding globulin-bound estradiol, estrone, and estrone sulfate), and moderately reduced after adjusting for sex hormone-binding globulin, whereas adjustment for the androgens (androstenedione, dehydroepiandrosterone, dehydroepiandrosterone sulfate, and testosterone) had little effect on the excess risk. The results are compatible with the hypothesis that the increase in breast cancer risk with increasing BMI among postmenopausal women is largely the result of the associated increase in estrogens, particularly bioavailable estradiol.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Estrogen and the risk of breast cancer.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hormonal carcinogenesis.

              Hormone-related cancers, namely breast, endometrium, ovary, prostate, testis, thyroid and osteosarcoma, share a unique mechanism of carcinogenesis. Endogenous and exogenous hormones drive cell proliferation, and thus the opportunity for the accumulation of random genetic errors. The emergence of a malignant phenotype depends on a series of somatic mutations that occur during cell division, but the specific genes involved in progression of hormone-related cancers are currently unknown. In this review, the epidemiology of endometrial cancer and breast cancer are used to illustrate the paradigms of hormonal carcinogenesis. Then, new strategies for early detection and prevention of hormonal carcinogenesis are discussed. This includes developing polygenic models of cancer predisposition and the further development of safe and effective chemopreventives that block target sequence activity. We developed polygenic models for breast and prostate cancer after hypothesizing that functionally relevant sequence variants in genes involved in steroid hormone metabolism and transport would act together, and also interact with well-known hormonally related risk factors, to define a high-risk profile for cancer. A combination of genes each with minor variation in expressed activity could provide a degree of separation of risk that would be clinically useful as they could yield a large cumulative difference after several decades. The genes included in the breast cancer model are the 17beta-hydroxysteroid dehydrogenase 1 (HSD17B1) gene, the cytochrome P459c17alpha (CYP17) gene, the aromatase (CYP19) gene, and the estrogen receptor alpha (ER) gene. The prostate cancer model includes the androgen receptor gene (AR), steroid 5alpha-reductase type II (SRD5A2), CYP17 and the 3beta hydroxysteroid dehydrogenase (HSD3B2) gene. We present data from our multi-ethnic cohort to support these models.
                Bookmark

                Author and article information

                Journal
                BMC Cancer
                BMC Cancer
                BioMed Central
                1471-2407
                2010
                11 October 2010
                : 10
                : 547
                Affiliations
                [1 ]DEB, NICHD, NIH, CRC, Room 1-3330, 10 Center Drive, MSC-1103 Bethesda, Maryland, USA
                [2 ]Athens University Medical School, 80 Vas. Sophias Av., 115 28 Athens, Greece
                [3 ]ZRT Laboratory, Beaverton, Oregon, USA
                [4 ]Wright State University Boonshoft School of Medicine, Dayton Ohio, USA
                Article
                1471-2407-10-547
                10.1186/1471-2407-10-547
                2958955
                20937135
                390ef3e6-eab5-4111-88ef-53d0a20b17a1
                Copyright ©2010 Dimitrakakis et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 26 March 2010
                : 11 October 2010
                Categories
                Research Article

                Oncology & Radiotherapy
                Oncology & Radiotherapy

                Comments

                Comment on this article