3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Aerobic fitness is associated with greater hippocampal cerebral blood flow in children

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The present study is the first to investigate whether cerebral blood flow in the hippocampus relates to aerobic fitness in children. In particular, we used arterial spin labeling (ASL) perfusion MRI to provide a quantitative measure of blood flow in the hippocampus in 73 7- to 9-year-old preadolescent children. Indeed, aerobic fitness was found to relate to greater perfusion in the hippocampus, independent of age, sex, and hippocampal volume. Such results suggest improved microcirculation and cerebral vasculature in preadolescent children with higher levels of aerobic fitness. Further, aerobic fitness may influence how the brain regulates its metabolic demands via blood flow in a region of the brain important for learning and memory. To add specificity to the relationship of fitness to the hippocampus, we demonstrate no significant association between aerobic fitness and cerebral blood flow in the brainstem. Our results reinforce the importance of aerobic fitness during a critical period of child development.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Vascular niche for adult hippocampal neurogenesis.

          The thin lamina between the hippocampal hilus and granule cell layer, or subgranule zone (SGZ), is an area of active proliferation within the adult hippocampus known to generate new neurons throughout adult life. Although the neuronal fate of many dividing cells is well documented, little information is available about the phenotypes of cells in S-phase or how the dividing cells might interact with neighboring cells in the process of neurogenesis. Here, we make the unexpected observation that dividing cells are found in dense clusters associated with the vasculature and roughly 37% of all dividing cells are immunoreactive for endothelial markers. Most of the newborn endothelial cells disappear over several weeks, suggesting that neurogenesis is intimately associated with a process of active vascular recruitment and subsequent remodeling. The present data provide the first evidence that adult neurogenesis occurs within an angiogenic niche. This environment may provide a novel interface where mesenchyme-derived cells and circulating factors influence plasticity in the adult central nervous system. Copyright 2000 Wiley-Liss, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Aerobic fitness is associated with hippocampal volume in elderly humans.

            Deterioration of the hippocampus occurs in elderly individuals with and without dementia, yet individual variation exists in the degree and rate of hippocampal decay. Determining the factors that influence individual variation in the magnitude and rate of hippocampal decay may help promote lifestyle changes that prevent such deterioration from taking place. Aerobic fitness and exercise are effective at preventing cortical decay and cognitive impairment in older adults and epidemiological studies suggest that physical activity can reduce the risk for developing dementia. However, the relationship between aerobic fitness and hippocampal volume in elderly humans is unknown. In this study, we investigated whether individuals with higher levels of aerobic fitness displayed greater volume of the hippocampus and better spatial memory performance than individuals with lower fitness levels. Furthermore, in exploratory analyses, we assessed whether hippocampal volume mediated the relationship between fitness and spatial memory. Using a region-of-interest analysis on magnetic resonance images in 165 nondemented older adults, we found a triple association such that higher fitness levels were associated with larger left and right hippocampi after controlling for age, sex, and years of education, and larger hippocampi and higher fitness levels were correlated with better spatial memory performance. Furthermore, we demonstrated that hippocampal volume partially mediated the relationship between higher fitness levels and enhanced spatial memory. Our results clearly indicate that higher levels of aerobic fitness are associated with increased hippocampal volume in older humans, which translates to better memory function. Copyright 2008 Wiley-Liss, Inc.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Running enhances neurogenesis, learning, and long-term potentiation in mice.

              Running increases neurogenesis in the dentate gyrus of the hippocampus, a brain structure that is important for memory function. Consequently, spatial learning and long-term potentiation (LTP) were tested in groups of mice housed either with a running wheel (runners) or under standard conditions (controls). Mice were injected with bromodeoxyuridine to label dividing cells and trained in the Morris water maze. LTP was studied in the dentate gyrus and area CA1 in hippocampal slices from these mice. Running improved water maze performance, increased bromodeoxyuridine-positive cell numbers, and selectively enhanced dentate gyrus LTP. Our results indicate that physical activity can regulate hippocampal neurogenesis, synaptic plasticity, and learning.
                Bookmark

                Author and article information

                Contributors
                Journal
                Dev Cogn Neurosci
                Dev Cogn Neurosci
                Developmental Cognitive Neuroscience
                Elsevier
                1878-9293
                1878-9307
                04 July 2016
                August 2016
                04 July 2016
                : 20
                : 52-58
                Affiliations
                [a ]Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
                [b ]Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
                [c ]Institute of Biomedical Engineering and Oxford Centre for Functional MRI of the Brain, University of Oxford, Oxford, United Kingdom
                [d ]Department of Kinesiology & Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
                Author notes
                [* ]Corresponding author at: Department of Psychology, The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL 61801, USA. lchaddo2@ 123456illinois.edu
                Article
                S1878-9293(15)30077-3
                10.1016/j.dcn.2016.07.001
                6987716
                27419884
                3914ade3-f834-4236-85ff-d04f1a09040d

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 26 August 2015
                : 30 June 2016
                : 1 July 2016
                Categories
                Original Research

                Neurosciences
                arterial spin labeling,childhood,development,hippocampus,perfusion,physical activity
                Neurosciences
                arterial spin labeling, childhood, development, hippocampus, perfusion, physical activity

                Comments

                Comment on this article