10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Force-induced misfolding in RNA

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          RNA folding is a kinetic process governed by the competition of a large number of structures stabilized by the transient formation of base pairs that may induce complex folding pathways and the formation of misfolded structures. Despite of its importance in modern biophysics, the current understanding of RNA folding kinetics is limited by the complex interplay between the weak base-pair interactions that stabilize the native structure and the disordering effect of thermal forces. The possibility of mechanically pulling individual molecules offers a new perspective to understand the folding of nucleic acids. Here we investigate the folding and misfolding mechanism in RNA secondary structures pulled by mechanical forces. We introduce a model based on the identification of the minimal set of structures that reproduce the patterns of force-extension curves obtained in single molecule experiments. The model requires only two fitting parameters: the attempt frequency at the level of individual base pairs and a parameter associated to a free energy correction that accounts for the configurational entropy of an exponentially large number of neglected secondary structures. We apply the model to interpret results recently obtained in pulling experiments in the three-helix junction S15 RNA molecule (RNAS15). We show that RNAS15 undergoes force-induced misfolding where force favors the formation of a stable non-native hairpin. The model reproduces the pattern of unfolding and refolding force-extension curves, the distribution of breakage forces and the misfolding probability obtained in the experiments.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Vienna RNA secondary structure server.

          The Vienna RNA secondary structure server provides a web interface to the most frequently used functions of the Vienna RNA software package for the analysis of RNA secondary structures. It currently offers prediction of secondary structure from a single sequence, prediction of the consensus secondary structure for a set of aligned sequences and the design of sequences that will fold into a predefined structure. All three services can be accessed via the Vienna RNA web server at http://rna.tbi.univie.ac.at/.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies

            The description of nonequilibrium processes in nano-sized objects, where the typical energies involved are a few times, is increasingly becoming central to disciplines as diverse as condensed-matter physics, materials science, and biophysics. Major recent developments towards a unified treatment of arbitrarily large fluctuations in small systems are described by fluctuation theorems that relate the probabilities of a system absorbing from or releasing to the bath a given amount of energy in a nonequilibrium process. Here we experimentally verify the Crooks Fluctuation Theorem (CFT) under weak and strong nonequilibrium conditions by using optical tweezers to measure the irreversible mechanical work during the unfolding and refolding of a small RNA hairpin and an RNA three-helix junction. We also show that the CFT provides a powerful way to obtain folding free energies in biomolecules by determining the crossing between the unfolding and refolding irreversible work distributions. The method makes it possible to obtain folding free energies in nonequilibrium processes that dissipate up to of the average total work exerted, thereby paving the way for reconstructing free energy landscapes along reaction coordinates in nonequilibrium single-molecule experiments.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              How RNA folds.

              We describe the RNA folding problem and contrast it with the much more difficult protein folding problem. RNA has four similar monomer units, whereas proteins have 20 very different residues. The folding of RNA is hierarchical in that secondary structure is much more stable than tertiary folding. In RNA the two levels of folding (secondary and tertiary) can be experimentally separated by the presence or absence of Mg2+. Secondary structure can be predicted successfully from experimental thermodynamic data on secondary structure elements: helices, loops, and bulges. Tertiary interactions can then be added without much distortion of the secondary structure. These observations suggest a folding algorithm to predict the structure of an RNA from its sequence. However, to solve the RNA folding problem one needs thermodynamic data on tertiary structure interactions, and identification and characterization of metal-ion binding sites. These data, together with force versus extension measurements on single RNA molecules, should provide the information necessary to test and refine the proposed algorithm. Copyright 1999 Academic Press.
                Bookmark

                Author and article information

                Journal
                26 January 2009
                Article
                10.1103/PhysRevE.78.061925
                0901.4094
                3930d485-b050-4842-8742-4d4c81a0897b

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                Phys.Rev.E78:061925,2008
                28 pages, 11 figures
                physics.bio-ph cond-mat.stat-mech

                Comments

                Comment on this article