30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Emerging key roles for P2X receptors in the kidney

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          P2X ionotropic non-selective cation channels are expressed throughout the kidney and are activated in a paracrine or autocrine manner following the binding of extracellular ATP and related extracellular nucleotides. Whilst there is a wealth of literature describing a regulatory role of P2 receptors (P2R) in the kidney, there are significantly less data on the regulatory role of P2X receptors (P2XR) compared with that described for metabotropic P2Y. Much of the historical literature describing a role for P2XR in the kidney has focused heavily on the role of P2X1R in the autoregulation of renal blood flow. More recently, however, there has been a plethora of manuscripts providing compelling evidence for additional roles for P2XR in both kidney health and disease. This review summarizes the current evidence for the involvement of P2XR in the regulation of renal tubular and vascular function, and highlights the novel data describing their putative roles in regulating physiological and pathophysiological processes in the kidney.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Extracellular ATP triggers and maintains asthmatic airway inflammation by activating dendritic cells.

          Extracellular ATP serves as a danger signal to alert the immune system of tissue damage by acting on P2X or P2Y receptors. Here we show that allergen challenge causes acute accumulation of ATP in the airways of asthmatic subjects and mice with experimentally induced asthma. All the cardinal features of asthma, including eosinophilic airway inflammation, Th2 cytokine production and bronchial hyper-reactivity, were abrogated when lung ATP levels were locally neutralized using apyrase or when mice were treated with broad-spectrum P2-receptor antagonists. In addition to these effects of ATP in established inflammation, Th2 sensitization to inhaled antigen was enhanced by endogenous or exogenous ATP. The adjuvant effects of ATP were due to the recruitment and activation of lung myeloid dendritic cells that induced Th2 responses in the mediastinal nodes. Together these data show that purinergic signaling has a key role in allergen-driven lung inflammation that is likely to be amenable to therapeutic intervention.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cellular distribution and functions of P2 receptor subtypes in different systems.

            This review is aimed at providing readers with a comprehensive reference article about the distribution and function of P2 receptors in all the organs, tissues, and cells in the body. Each section provides an account of the early history of purinergic signaling in the organ?cell up to 1994, then summarizes subsequent evidence for the presence of P2X and P2Y receptor subtype mRNA and proteins as well as functional data, all fully referenced. A section is included describing the plasticity of expression of P2 receptors during development and aging as well as in various pathophysiological conditions. Finally, there is some discussion of possible future developments in the purinergic signaling field.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Extracellular ATP triggers IL-1 beta release by activating the purinergic P2Z receptor of human macrophages.

              Extracellular ATP (ATPe) is known to cause release of processed IL-1 beta from LPS-treated macrophages and microglial cells. IL-1 beta release is fast and thought to be associated with cell death. We have reinvestigated this process to identify 1) the purinergic receptor involved; 2) the relationship to cell death; and 3) pharmacologic agonists or antagonists able to modulate IL-1 beta release. Our data confirm that ATPe is a powerful stimulus for IL-1 beta release from LPS-treated human macrophages; however, we also show that IL-1 beta release is not necessarily associated with cell death, as it occurs at lower ATP concentrations and much earlier than leakage of cytoplasmic markers. The selective purinergic P2Z receptor agonist benzoylbenzoyl ATP was at least one order of magnitude more powerful than ATP, but also had a strong cytotoxic effect. 2-Methylthio-ATP was equipotent as ATPe at the optimal concentration of 1 mM, but markedly inhibitory at higher concentrations. The irreversible P2Z blocker-oxidized ATP completely inhibited ATPe-induced IL-1 beta release. IL-1 beta release also was inhibited by increasing the K+ concentration of the incubation medium. These data suggest that ATPe triggers IL-1 beta via the purinergic P2Z receptor recently shown to be expressed by human macrophages and identified as a new member of the P2X family (P2X7), and provide pharmacologic tools for the modulation of IL-1 beta release in vitro and, possibly, in vivo.
                Bookmark

                Author and article information

                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                27 September 2013
                2013
                : 4
                : 262
                Affiliations
                [1] 1Medway School of Pharmacy, The Universities of Kent and Greenwich Kent, UK
                [2] 2Discovery BioMed Inc. Birmingham, AL, USA
                Author notes

                Edited by: Volker Vallon, University of California San Diegio and VA San Diego Healthcare System, USA

                Reviewed by: Roger Evans, Monash University, Australia; Janos Peti-Peterdi, University of Southern California, USA

                *Correspondence: S. S. Wildman, Urinary System Physiology Unit, Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Anson Building, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK e-mail: s.s.wildman@ 123456kent.ac.uk

                This article was submitted to Renal and Epithelial Physiology, a section of the journal Frontiers in Physiology.

                †Joint senior authors.

                Article
                10.3389/fphys.2013.00262
                3785026
                24098285
                3934c818-b85d-4a6d-9b51-94081b911850
                Copyright © 2013 Birch, Schwiebert, Peppiatt-Wildman and Wildman.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 05 July 2013
                : 05 September 2013
                Page count
                Figures: 2, Tables: 0, Equations: 0, References: 57, Pages: 8, Words: 6678
                Categories
                Physiology
                Hypothesis and Theory Article

                Anatomy & Physiology
                p2x receptor,p2 receptors,kidney,renal circulation,renal tubular transport,inborn errors,p2x7 receptor,pathology

                Comments

                Comment on this article