7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inhibition of NADPH Oxidase 5 (NOX5) Suppresses High Glucose-Induced Oxidative Stress, Inflammation and Extracellular Matrix Accumulation in Human Glomerular Mesangial Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The aim of this study was to explore the effects of NADPH oxidase 5 (NOX5) in high glucose-stimulated human glomerular mesangial cells (HMCs).

          Material/Methods

          Cells were cultured under normal glucose (NG) or high glucose (HG) conditions. Then, NOX5 siRNA was transfected into HG-treated HMCs. A Cell Counting Kit-8 assay, colony formation assay and 5-ethynyl-20-deoxyuridine (EDU) incorporation assay were applied to measure cell proliferative ability. In addition, the levels of oxidative stress factors including reactive oxygen species (ROS), malonaldehyde (MDA), NADPH, superoxide dismutase (SOD), and glutathione peroxidase (GSH-PX), inflammatory cytokines including tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, IL-1β, and monocyte chemoattractant protein-1 (MCP-1) in HMCs were detected by kits. Moreover, the expression of TLR4/NF-κB signaling and extracellular matrix (ECM) associated genes were evaluated by western blotting.

          Results

          The results revealed that the NOX5 was overexpressed in HG-treated HMCs. Silencing of NOX5 decreased proliferation of HMCs induced by HG. And NOX5 silencing alleviated the production of MDA and NADPH accompanied by an increase of SOD and GSH-PX levels. Additionally, the contents of TNF-α, IL-6, IL-1β, and MCP-1 were reduced after transfection with NOX5 siRNA. Furthermore, silencing of NOX5 deceased the expression of collagen I, collagen IV, TGF-β1, and fibronectin induced by HG stimulation. TLR4, MyD88, and phospho-NF-κB p65 expression were downregulated notably in NOX5 silencing group.

          Conclusions

          Taken together, these findings demonstrated that inhibition of NOX5 attenuated HG-induced HMCs oxidative stress, inflammation, and ECM accumulation, suggesting that NOX5 may serve as a potential therapeutic target for diabetic nephropathy (DN) treatment.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Diverse Roles of TGF-β/Smads in Renal Fibrosis and Inflammation

          TGF-β1 has been long considered as a key mediator in renal fibrosis and induces renal scarring largely by activating its downstream Smad signaling pathway. Interestingly, while mice overexpressing active TGF-β1 develop progressive renal injury, latent TGF-β1 plays a protective role in renal fibrosis and inflammation. Under disease conditions, Smad2 and Smad3 are highly activated, while Smad7 is degraded through the ubiquitin proteasome degradation mechanism. In addition to TGF-β1, many pathogenic mediators such as angiotensin II and advanced glycation end products can also activate the Smad pathway via both TGF-β-dependent and independent mechanisms. Smads interact with other signaling pathways, such as the MAPK and NF-κB pathways, to positively or negatively regulate renal inflammation and fibrosis. Studies from gene knockout mice demonstrate that TGF-β1 acts by stimulating its downstream Smads to diversely regulate kidney injury. In the context of renal fibrosis and inflammation, Smad3 is pathogenic, while Smad2 and Smad7 are protective. Smad4 exerts its diverse roles by transcriptionally enhancing Smad3-mediated renal fibrosis while inhibiting NF-κB-driven renal inflammation via a Smad7-dependent mechanism. Furthermore, we also demonstrated that TGF-β1 acts by stimulating Smad3 to positively or negatively regulate microRNAs to exert its fibrotic role in kidney disease. In conclusion, TGF-β/Smad signaling is a major pathway leading to kidney disease. Smad3 is a key mediator in renal fibrosis and inflammation, whereas Smad2 and Smad7 are renoprotective. Smad4 exerts its diverse role in promoting renal fibrosis while inhibiting inflammation. Thus, targeting the downstream TGF-β/Smad3 signaling pathway by gene transfer of either Smad7 or Smad3-dependent microRNAs may represent a specific and effective therapeutic strategy for kidney disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            New insights into molecular mechanisms of diabetic kidney disease.

            Diabetic kidney disease remains a major microvascular complication of diabetes and the most common cause of chronic kidney failure requiring dialysis in the United States. Medical advances over the past century have substantially improved the management of diabetes mellitus and thereby have increased patient survival. However, current standards of care reduce but do not eliminate the risk of diabetic kidney disease, and further studies are warranted to define new strategies for reducing the risk of diabetic kidney disease. In this review, we highlight some of the novel and established molecular mechanisms that contribute to the development of the disease and its outcomes. In particular, we discuss recent advances in our understanding of the molecular mechanisms implicated in the pathogenesis and progression of diabetic kidney disease, with special emphasis on the mitochondrial oxidative stress and microRNA targets. Additionally, candidate genes associated with susceptibility to diabetic kidney disease and alterations in various cytokines, chemokines, and growth factors are addressed briefly. Copyright © 2014 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nephropathy and elevated BP in mice with podocyte-specific NADPH oxidase 5 expression.

              NADPH oxidase (Nox) enzymes are a significant source of reactive oxygen species, which contribute to glomerular podocyte dysfunction. Although studies have implicated Nox1, -2, and -4 in several glomerulopathies, including diabetic nephropathy, little is known regarding the role of Nox5 in this context. We examined Nox5 expression and regulation in kidney biopsies from diabetic patients, cultured human podocytes, and a novel mouse model. Nox5 expression increased in human diabetic glomeruli compared with nondiabetic glomeruli. Stimulation with angiotensin II upregulated Nox5 expression in human podocyte cultures and increased reactive oxygen species generation. siRNA-mediated Nox5 knockdown inhibited angiotensin II-stimulated production of reactive oxygen species and altered podocyte cytoskeletal dynamics, resulting in an Rac-mediated motile phenotype. Because the Nox5 gene is absent in rodents, we generated transgenic mice expressing human Nox5 in a podocyte-specific manner (Nox5(pod+)). Nox5(pod+) mice exhibited early onset albuminuria, podocyte foot process effacement, and elevated systolic BP. Subjecting Nox5(pod+) mice to streptozotocin-induced diabetes further exacerbated these changes. Our data show that renal Nox5 is upregulated in human diabetic nephropathy and may alter filtration barrier function and systolic BP through the production of reactive oxygen species. These findings provide the first evidence that podocyte Nox5 has an important role in impaired renal function and hypertension.
                Bookmark

                Author and article information

                Journal
                Med Sci Monit
                Med. Sci. Monit
                Medical Science Monitor
                Medical Science Monitor : International Medical Journal of Experimental and Clinical Research
                International Scientific Literature, Inc.
                1234-1010
                1643-3750
                2020
                03 February 2020
                21 January 2020
                : 26
                : e919399-1-e919399-11
                Affiliations
                [1 ]Department of Endocrinology, Second Clinical Medical College, Inner Mongolia University for Nationalities (Inner Mongolia Forestry General Hospital), Tongliao, Inner Mongolia, P.R. China
                [2 ]Department of Endocrinology, The Centre Hospital of Wuhan, Wuhan, Hubei, P.R. China
                [3 ]Department of Nephrology, Taizhou First People’s Hospital, Taizhou, Zhejiang, P.R. China
                Author notes
                Corresponding Author: Shouhao Zheng, e-mail: shouhaozheng13@ 123456163.com
                [A]

                Study Design

                [B]

                Data Collection

                [C]

                Statistical Analysis

                [D]

                Data Interpretation

                [E]

                Manuscript Preparation

                [F]

                Literature Search

                [G]

                Funds Collection

                [*]

                Yingxin Li and Yarong Li contributed equally to this work

                Article
                919399
                10.12659/MSM.919399
                7020764
                32012145
                394249d1-4299-4ebb-b29c-d6a67e6f606c
                © Med Sci Monit, 2020

                This work is licensed under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International ( CC BY-NC-ND 4.0)

                History
                : 14 August 2019
                : 08 October 2019
                Categories
                Lab/In Vitro Research

                cell proliferation,inflammation,mesangial cells,oxidative stress

                Comments

                Comment on this article