8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Correction: KRIT1 Regulates the Homeostasis of Intracellular Reactive Oxygen Species

      correction
      The PLOS ONE staff
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fig 3 is incorrect. The authors have provided a corrected version here. The publisher apologizes for the error. 10.1371/journal.pone.0223089.g001 Fig 3 KRIT1 regulates steady-state levels of intracellular ROS. A–B) Qualitative detection of the steady-state levels of intracellular ROS by fluorescence microscopy. Wild-type (WT), KRIT1−/− (KRIT1−/−) and KRIT1-transduced (Lv-KRIT1 9/6) MEFs grown under standard conditions were analyzed by fluorescence microscopy 20 min after the addition of the cell-permeable redox-sensitive fluorogenic probe DCFH-DA (A) or DHE (B). The images were taken with a fixed short exposure time and a high fluorescence intensity threshold value to avoid saturation, and are representative of several independent experiments. Notice that KRIT1−/− cells (panels b) showed significantly more intense fluorescent signals than WT cells (panels a), indicating that they contained higher levels of ROS. Conversely, ROS levels in KRIT1−/− cells were reduced to near WT levels upon KRIT1 re-expression by lentiviral infection (panels c). Scale bar represents 50 μm. C–H. Quantitative determination of the steady-state levels of intracellular ROS by FACS analysis. Wild-type (WT), KRIT1−/− (K−/−) and three distinct KRIT1−/− cell populations re-expressing KRIT1 at low, medium and high levels, respectively [Lv-KRIT1 2/7 (K2/7), 10/6 (K10/6) and 9/6 (K9/6)], were grown under standard conditions and analyzed by FACS 20 min after the addition of the DCFH-DA (C–F) or DHE (G,H) probes. Representative flow cytometry profiles (C,E,G) and quantitative histograms of the mean fluorescence intensity (M.F.I.) values (D,F,H) of n≥5 independent FACS experiments are shown. M.F.I. values were normalized to spontaneous fluorescence of control cells untreated with the fluorogenic probes (Ctr) and expressed as percentage of KRIT1−/− (K−/−) cells (± SD). *P<0.001 versus KRIT1−/− cells. Notice that KRIT1−/− cells displayed the highest content of intracellular ROS, whereas the re-expression of KRIT1 caused a significant, expression level-dependent decrease in intracellular ROS levels.

          Related collections

          Most cited references1

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          KRIT1 Regulates the Homeostasis of Intracellular Reactive Oxygen Species

          KRIT1 is a gene responsible for Cerebral Cavernous Malformations (CCM), a major cerebrovascular disease characterized by abnormally enlarged and leaky capillaries that predispose to seizures, focal neurological deficits, and fatal intracerebral hemorrhage. Comprehensive analysis of the KRIT1 gene in CCM patients has suggested that KRIT1 functions need to be severely impaired for pathogenesis. However, the molecular and cellular functions of KRIT1 as well as CCM pathogenesis mechanisms are still research challenges. We found that KRIT1 plays an important role in molecular mechanisms involved in the maintenance of the intracellular Reactive Oxygen Species (ROS) homeostasis to prevent oxidative cellular damage. In particular, we demonstrate that KRIT1 loss/down-regulation is associated with a significant increase in intracellular ROS levels. Conversely, ROS levels in KRIT1−/− cells are significantly and dose-dependently reduced after restoration of KRIT1 expression. Moreover, we show that the modulation of intracellular ROS levels by KRIT1 loss/restoration is strictly correlated with the modulation of the expression of the antioxidant protein SOD2 as well as of the transcriptional factor FoxO1, a master regulator of cell responses to oxidative stress and a modulator of SOD2 levels. Furthermore, we show that the KRIT1-dependent maintenance of low ROS levels facilitates the downregulation of cyclin D1 expression required for cell transition from proliferative growth to quiescence. Finally, we demonstrate that the enhanced ROS levels in KRIT1−/− cells are associated with an increased cell susceptibility to oxidative DNA damage and a marked induction of the DNA damage sensor and repair gene Gadd45α, as well as with a decline of mitochondrial energy metabolism. Taken together, our results point to a new model where KRIT1 limits the accumulation of intracellular oxidants and prevents oxidative stress-mediated cellular dysfunction and DNA damage by enhancing the cell capacity to scavenge intracellular ROS through an antioxidant pathway involving FoxO1 and SOD2, thus providing novel and useful insights into the understanding of KRIT1 molecular and cellular functions.
            Bookmark

            Author and article information

            Journal
            PLoS One
            PLoS ONE
            plos
            plosone
            PLoS ONE
            Public Library of Science (San Francisco, CA USA )
            1932-6203
            7 November 2019
            2019
            7 November 2019
            : 14
            : 11
            : e0223089
            Article
            PONE-D-19-26040
            10.1371/journal.pone.0223089
            6837327
            31697685
            3944231d-edb2-4aa1-9335-e8e29f337117
            © 2019 The PLOS ONE staff

            This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

            History
            Page count
            Figures: 1, Tables: 0, Pages: 3
            Categories
            Correction

            Uncategorized
            Uncategorized

            Comments

            Comment on this article