13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Training effects on motor–cognitive dual-task performance in older adults : A systematic review

      ,
      European Review of Aging and Physical Activity
      Springer Nature

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: not found
          • Article: not found

          On the economy of the human-processing system.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Walking is more like catching than tapping: gait in the elderly as a complex cognitive task.

            Walking is generally viewed as an automated, over-learned, rhythmic motor task and may even be considered the lower-limb analog of rhythmic finger tapping, another automated motor task. Thus, one might hypothesize that walking would be associated with a simple rhythmic task like tapping rather than with a complex motor task like catching. Surprisingly, however, we find that among older adults, routine walking has more in common with complex motor tasks, like catching a moving object, than it does with tapping. Tapping performance, including both the average tapping interval and the variability of tapping interval, was not significantly associated with any gait parameter (gait speed, average stride time and stride time variability). In contrast, catch game performance was significantly associated with measures of walking, suggesting that walking is more like catching than it is like tapping. For example, participants with a higher gait speed tended to have lower times to first move when catching, better catching accuracy, and less catching errors. Stride time variability was significantly associated with each of the measures of catching. Participants with a lower stride time variability (a more steady gait) had better catching accuracy, lower time to first move, fewer direction changes when moving the cursor to catch the falling object, and less catching errors. To understand this association, we compared walking performance to performance on the Stroop test, a classic measure of executive function, and tests of memory. Walking was associated with higher-level cognitive resources, specifically, executive function, but not with memory or cognitive function in general. For example, a lower (better) stride time variability was significantly associated with higher (better) scores on the Stroop test, but not with tests of memory. Similarly, when participants were stratified based on their performance on the Stroop test and tests of memory, stride time variability was dependent on the former, but not the latter. These findings underscore the interconnectedness of gait and cognitive function, indicate that even routine walking is a complex cognitive task that is associated with higher-level cognitive function, and suggest an alternative approach to the treatment of gait and fall risk in the elderly.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effects of single-task versus dual-task training on balance performance in older adults: a double-blind, randomized controlled trial.

              To compare the effect of 3 different approaches to balance training on dual-task balance performance in older adults with balance impairment. A double-blind, randomized controlled trial. University research laboratory. Older adults (N=23) with balance impairment (mean age, 74.8y). They scored 52 or less on the Berg Balance Scale (BBS) and/or walked with a self-selected gait speed of 1.1m/s or less. Participants were randomly assigned to 1 of 3 interventions: single-task training, dual-task training with fixed-priority instructions, and dual-task training with variable-priority instructions. Participants received 45-minute individualized training sessions, 3 times a week for 4 weeks. Gait speed under single-task and dual-task conditions was obtained at baseline, the second week, the end of training, and the twelfth week after the end of training. Other measures, including the BBS and the Activities-specific Balance Confidence (ABC) Scale, were collected at baseline and after training. Participants in all groups improved on the BBS (P<.001; effect size [ES]=.72), and walked significantly faster after training (P=.02; ES=.27). When a cognitive task was added, however, only participants who received dual-task training with fixed-priority instructions and dual-task training with variable-priority instructions exhibited significant improvements in gait speed (P<.001, ES=.57; and P<.001, ES=.46, respectively). In addition, only the dual-task training with variable-priority instructions group demonstrated a dual-task training effect at the second week of training and maintained the training effect at the 12-week follow-up. Only the single-task training group showed a significant increase on the ABC after training (P<.001; ES=.61). Dual-task training is effective in improving gait speed under dual-task conditions in elderly participants with balance impairment. Training balance under single-task conditions may not generalize to balance control during dual-task contexts. Explicit instruction regarding attentional focus is an important factor contributing to the rate of learning and the retention of the dual-task training effect.
                Bookmark

                Author and article information

                Journal
                European Review of Aging and Physical Activity
                Eur Rev Aging Phys Act
                Springer Nature
                1813-7253
                1861-6909
                April 2014
                February 2013
                : 11
                : 1
                : 5-24
                Article
                10.1007/s11556-013-0122-z
                3946c30c-c822-450d-8150-191898cc9be3
                © 2014
                History

                Comments

                Comment on this article