192
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Modular Architecture of Metabolic Pathways Revealed by Conserved Sequences of Reactions

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The metabolic network is both a network of chemical reactions and a network of enzymes that catalyze reactions. Toward better understanding of this duality in the evolution of the metabolic network, we developed a method to extract conserved sequences of reactions called reaction modules from the analysis of chemical compound structure transformation patterns in all known metabolic pathways stored in the KEGG PATHWAY database. The extracted reaction modules are repeatedly used as if they are building blocks of the metabolic network and contain chemical logic of organic reactions. Furthermore, the reaction modules often correspond to traditional pathway modules defined as sets of enzymes in the KEGG MODULE database and sometimes to operon-like gene clusters in prokaryotic genomes. We identified well-conserved, possibly ancient, reaction modules involving 2-oxocarboxylic acids. The chain extension module that appears as the tricarboxylic acid (TCA) reaction sequence in the TCA cycle is now shown to be used in other pathways together with different types of modification modules. We also identified reaction modules and their connection patterns for aromatic ring cleavages in microbial biodegradation pathways, which are most characteristic in terms of both distinct reaction sequences and distinct gene clusters. The modular architecture of biodegradation modules will have a potential for predicting degradation pathways of xenobiotic compounds. The collection of these and many other reaction modules is made available as part of the KEGG database.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Hierarchical organization of modularity in metabolic networks

          Spatially or chemically isolated functional modules composed of several cellular components and carrying discrete functions are considered fundamental building blocks of cellular organization, but their presence in highly integrated biochemical networks lacks quantitative support. Here we show that the metabolic networks of 43 distinct organisms are organized into many small, highly connected topologic modules that combine in a hierarchical manner into larger, less cohesive units, their number and degree of clustering following a power law. Within Escherichia coli the uncovered hierarchical modularity closely overlaps with known metabolic functions. The identified network architecture may be generic to system-level cellular organization.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Development of a chemical structure comparison method for integrated analysis of chemical and genomic information in the metabolic pathways.

            Cellular functions result from intricate networks of molecular interactions, which involve not only proteins and nucleic acids but also small chemical compounds. Here we present an efficient algorithm for comparing two chemical structures of compounds, where the chemical structure is treated as a graph consisting of atoms as nodes and covalent bonds as edges. On the basis of the concept of functional groups, 68 atom types (node types) are defined for carbon, nitrogen, oxygen, and other atomic species with different environments, which has enabled detection of biochemically meaningful features. Maximal common subgraphs of two graphs can be found by searching for maximal cliques in the association graph, and we have introduced heuristics to accelerate the clique finding and to detect optimal local matches (simply connected common subgraphs). Our procedure was applied to the comparison and clustering of 9383 compounds, mostly metabolic compounds, in the KEGG/LIGAND database. The largest clusters of similar compounds were related to carbohydrates, and the clusters corresponded well to the categorization of pathways as represented by the KEGG pathway map numbers. When each pathway map was examined in more detail, finer clusters could be identified corresponding to subpathways or pathway modules containing continuous sets of reaction steps. Furthermore, it was found that the pathway modules identified by similar compound structures sometimes overlap with the pathway modules identified by genomic contexts, namely, by operon structures of enzyme genes.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              On the Evolution of Biochemical Syntheses.

                Bookmark

                Author and article information

                Journal
                J Chem Inf Model
                J Chem Inf Model
                ci
                jcisd8
                Journal of Chemical Information and Modeling
                American Chemical Society
                1549-9596
                1549-960X
                05 February 2013
                25 March 2013
                : 53
                : 3
                : 613-622
                Affiliations
                [1]Bioinformatics Center, Institute for Chemical Research, Kyoto University , Uji, Kyoto 611-0011, Japan
                Author notes
                [* ]Phone: +81-774-38-4521. Fax: +81-774-38-3269. E-mail: kanehisa@ 123456kuicr.kyoto-u.ac.jp .
                Article
                10.1021/ci3005379
                3632090
                23384306
                394ca93e-0a85-44f6-adcb-15414ce5bafa
                Copyright © 2013 American Chemical Society
                History
                : 09 November 2012
                Categories
                Article
                Custom metadata
                ci3005379
                ci-2012-005379

                Computational chemistry & Modeling
                Computational chemistry & Modeling

                Comments

                Comment on this article