8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The diabetic microenvironment causes mitochondrial oxidative stress in glomerular endothelial cells and pathological crosstalk with podocytes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          In the setting of diabetes mellitus, mitochondrial dysfunction and oxidative stress are important pathogenic mechanisms causing end organ damage, including diabetic kidney disease (DKD), but mechanistic understanding at a cellular level remains obscure. In mouse models of DKD, glomerular endothelial cell (GEC) dysfunction precedes albuminuria and contributes to neighboring podocyte dysfunction, implicating GECs in breakdown of the glomerular filtration barrier. In the following studies we wished to explore the cellular mechanisms by which GECs become dysfunctional in the diabetic milieu, and the impact to neighboring podocytes.

          Methods

          Mouse GECs were exposed to high glucose media (HG) or 2.5% v/v serum from diabetic mice or serum from non-diabetic controls, and evaluated for mitochondrial function (oxygen consumption), structure (electron microscopy), morphology (mitotracker), mitochondrial superoxide (mitoSOX), as well as accumulation of oxidized products (DNA lesion frequency (8-oxoG, endo-G), double strand breaks (γ-H2AX), endothelial function (NOS activity), autophagy (LC3) and apoptotic cell death (Annexin/PI; caspase 3). Supernatant transfer experiments from GECs to podocytes were performed to establish the effects on podocyte survival and transwell experiments were performed to determine the effects in co-culture.

          Results

          Diabetic serum specifically causes mitochondrial dysfunction and mitochondrial superoxide release in GECs. There is a rapid oxidation of mitochondrial DNA and loss of mitochondrial biogenesis without cell death. Many of these effects are blocked by mitoTEMPO a selective mitochondrial anti-oxidant. Secreted factors from dysfunctional GECs were sufficient to cause podocyte apoptosis in supernatant transfer experiments, or in co-culture but this did not occur when GECs had been previously treated with mitoTEMPO.

          Conclusion

          Dissecting the impact of the diabetic environment on individual cell-types from the kidney glomerulus indicates that GECs become dysfunctional and pathological to neighboring podocytes by increased levels of mitochondrial superoxide in GEC. These studies indicate that GEC-signaling to podocytes contributes to the loss of the glomerular filtration barrier in DKD.

          Graphical abstract

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans.

          Impaired mitochondrial maintenance in disparate cell types is a shared hallmark of many human pathologies and ageing. How mitochondrial biogenesis coordinates with the removal of damaged or superfluous mitochondria to maintain cellular homeostasis is not well understood. Here we show that mitophagy, a selective type of autophagy targeting mitochondria for degradation, interfaces with mitochondrial biogenesis to regulate mitochondrial content and longevity in Caenorhabditis elegans. We find that DCT-1 is a key mediator of mitophagy and longevity assurance under conditions of stress in C. elegans. Impairment of mitophagy compromises stress resistance and triggers mitochondrial retrograde signalling through the SKN-1 transcription factor that regulates both mitochondrial biogenesis genes and mitophagy by enhancing DCT-1 expression. Our findings reveal a homeostatic feedback loop that integrates metabolic signals to coordinate the biogenesis and turnover of mitochondria. Uncoupling of these two processes during ageing contributes to overproliferation of damaged mitochondria and decline of cellular function.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            PINK1/Parkin-mediated mitophagy in mammalian cells.

            Mitochondria-specific autophagy (mitophagy) is a fundamental process critical for maintaining mitochondrial fitness in a myriad of cell types. Particularly, mitophagy contributes to mitochondrial quality control by selectively eliminating dysfunctional mitochondria. In mammalian cells, the Ser/Thr kinase PINK1 and the E3 ubiquitin ligase Parkin act cooperatively in sensing mitochondrial functional state and marking damaged mitochondria for disposal via the autophagy pathway. Notably, ubiquitin and deubiquitinases play vital roles in modulating Parkin activity and mitophagy efficiency. In this review, we highlight recent breakthroughs addressing the key issues of how PINK1 activates Parkin in response to mitochondrial malfunction, how Parkin localizes specifically to impaired mitochondria, and how ubiquitination and deubiquitination regulate PINK1/Parkin-mediated mitophagy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress.

              A significant amount of reactive oxygen species (ROS) is generated during mitochondrial oxidative phosphorylation. Several studies have suggested that mtDNA may accumulate more oxidative DNA damage relative to nuclear DNA. This study used quantitative PCR to examine the formation and repair of hydrogen peroxide-induced DNA damage in a 16.2-kb mitochondrial fragment and a 17.7-kb fragment flanking the beta-globin gene. Simian virus 40-transformed fibroblasts treated with 200 microM hydrogen peroxide for 15 or 60 min exhibited 3-fold more damage to the mitochondrial genome compared with the nuclear fragment. Following a 60-min treatment, damage to the nuclear fragment was completely repaired within 1.5 hr, whereas no DNA repair in the mitochondrion was observed. Mitochondrial function, as assayed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide reduction, also showed a sharp decline. These cells displayed arrested-cell growth, large increases in p21 protein levels, and morphological changes consistent with apoptosis. In contrast, when hydrogen peroxide treatments were limited to 15 min, mtDNA damage was repaired with similar kinetics as the nuclear fragment, mitochondrial function was restored, and cells resumed division within 12 hr. These results indicate that mtDNA is a critical cellular target for ROS. A model is presented in which chronic ROS exposure, found in several degenerative diseases associated with aging, leads to decreased mitochondrial function, increased mitochondrial-generated ROS, and persistent mitochondrial DNA damage. Thus persistent mitochondrial DNA damage may serve as a useful biomarker for ROS-associated diseases.
                Bookmark

                Author and article information

                Contributors
                gac2009@med.cornell.edu
                liping.yu@mssm.edu
                gil.roberto10@yahoo.com
                samrodriguez826@gmail.com
                ssosa01@wesleyan.edu
                bill.janssen@mssm.edu
                evren.azeloglu@mssm.edu
                levenj01@gmail.com
                ilse.daehn@mssm.edu
                Journal
                Cell Commun Signal
                Cell Commun. Signal
                Cell Communication and Signaling : CCS
                BioMed Central (London )
                1478-811X
                8 July 2020
                8 July 2020
                2020
                : 18
                : 105
                Affiliations
                [1 ]GRID grid.59734.3c, ISNI 0000 0001 0670 2351, Division of Nephrology, Department of Medicine, , The Icahn School of Medicine at Mount Sinai, ; One Gustave Levy Place, Box 1003, New York, NY 10029 USA
                [2 ]GRID grid.59734.3c, ISNI 0000 0001 0670 2351, Microscopy CoRE, , The Icahn School of Medicine at Mount Sinai, ; New York, USA
                Author information
                http://orcid.org/0000-0001-9915-5376
                Article
                605
                10.1186/s12964-020-00605-x
                7341607
                32641054
                394ec2df-1276-402a-9c31-dbc834860f57
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 11 February 2020
                : 29 May 2020
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100000062, National Institute of Diabetes and Digestive and Kidney Diseases;
                Award ID: R01DK097253
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/100001259, National Kidney Foundation;
                Categories
                Research
                Custom metadata
                © The Author(s) 2020

                Cell biology
                endothelial cells,diabetes,crosstalk,podocytes,mitochondria,ros
                Cell biology
                endothelial cells, diabetes, crosstalk, podocytes, mitochondria, ros

                Comments

                Comment on this article