7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sofosbuvir: A Potential Treatment for Ebola

      discussion

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There are currently no effective licensed vaccines or proven drugs available for the treatment of Ebola, which causes one of the deadliest viral diseases. The urgent need to identify novel and effective pharmacologic approaches to treat Ebola infections is underlined by recent reports of new Ebola outbreaks from the Centers for Disease Control and Prevention (CDC), including the outbreak in the Eastern Democratic Republic of the Congo on August 1, 2018. Here we present an argument as to why sofosbuvir, presently used to treat chronic hepatitis C virus (HCV) infections, could be an ideal candidate for the treatment of Ebola infection. Ebola is a negative-sensed, non-segmented RNA virus and as with all RNA viruses, including HCV, uses the enzyme RNA-dependent RNA polymerase (RdRp, transcribed from the Ebola L gene), along with other proteins, to replicate, maintain, and express its RNA genome (Trunschke et al., 2013) by (1) binding to an appropriate complementary 5′-nucleotide triphosphate and converting it to a 5′-nucleotide monophosphate and (2) catalyzing the interaction between the NMP and a 3′-hydroxyl-ribonucleotide to form a 5′-3′ phosphodiester bond (McDonald, 2013). This process elongates the daughter RNA strand. The three dimensional structure of RdRp from RNA viruses resembles that of a cupped right hand and contains a finger, thumb, and palm domain (McDonald, 2013). Further, the palm domain of all viral RdRps, which mediate catalysis for RNA polymerization, have motifs A-E, and motifs A-C are the most conserved (Jácome et al., 2015). The predicted three-dimensional structure of the Ebola RdRp is similar to other viral RdRp (including HCV) as it has the homologous and highly conserved catalytic domains A-C in the palm (Jácome et al., 2015). Furthermore, like all other viral RdRp, Ebola RdRp utilizes 2 divalent metal ions to catalyze ribonucleotide polymerization (Jácome et al., 2015). The Ebola RdRp is an excellent pharmacological target as (1) its inhibition will decrease viral replication; (2) there is no similar protein target in human cells. Sofosbuvir (400 mg p.o. once daily for 12 or 24 weeks), in combination with other drugs, is used to treat chronic HCV infections (Keating, 2014). Sofosbuvir is a uridine analog nucleotide phosphoramidate prodrug that is ultimately bio-transformed in hepatocytes to a triphosphate metabolite (GS-461203) that inhibits HCV RdRp (also known as the NS5B protein)-catalyzed RNA synthesis, thereby inhibiting viral replication and transcription (Sofia, 2013). GS-461203 has a half-life of 38 h in human hepatocytes (Summers et al., 2014), and reaches concentrations that exceed the EC50 for Ebola RdRp, ensuring that it will produce sustained antiviral action. Interestingly, the triphosphate metabolite of the adenine analog BCX4430 inhibits HCV RdRp in vitro and protects mice against Ebola (Warren et al., 2014). Furthermore, the triphosphate metabolite of the nucleoside analog favipiravir (T-705) inhibits RdRp activity of numerous RNA viruses and protects mice against Ebola-induced mortality 6 days after infection (Oestereich et al., 2014). However, there was no statistically significant decrease in the mortality rate in patients from Guinea (Sissoko et al., 2016) and Sierra Leone (Bai et al., 2016) during the 2013–2016 Ebola epidemic patients that received favipiravir. Furthermore, there were patients who were evacuated from West Africa to Europe who received favipiravir, but its effect on patient survival could not be determined as all of these patients received advanced supportive care and the majority were given additional experimental treatment (Mora-Rillo et al., 2015; Schibler et al., 2015; Agrati et al., 2016). It should be noted that in the JIKI trial (single-arm, proof-of-concept design), the plasma concentrations of favipiravir did not reach the target levels set prior to the trial (Nguyen et al., 2017). The i.v. administration of 10 mg/kg of GS-5734 (once daily for 12 days), an adenine analog nucleotide phosphoramidate prodrug that is bio-transformed to an active nucleoside triphosphate compound, significantly decreased Ebola virus replication and protected 100% of rhesus monkeys against lethal Ebola virus (from 1995 outbreak in Kikwit, Zaire) infection (Warren et al., 2016). GS-5734 inhibits (EC50 = 86 nM) Ebola virus replication in human macrophages (Siegel et al., 2017). Furthermore, GS-5734 has completed phase I trials and is undergoing Phase II trials to determine its efficacy in Ebola survivors who have persistent viremia in semen (Bixler et al., 2017). The triphosphate metabolites of sofosbuvir (Sofia, 2013), BCX4430 (Warren et al., 2014), favipiravir (Bai et al., 2016), and GS-5734 (Warren et al., 2016) are incorporated into the viral RNA template and inhibit RdRp activity via chain termination. Thus, certain compounds that are active against HCV RdRp may also be efficacious in inhibiting Ebola RdRp. We propose that prior to clinical trials, sofosbuvir's efficacy be tested in vitro against human macrophages and Huh-7 cells infected with the Ebola Makona variant. If these results indicate that sofosbuvir is efficacious, we propose that its in vivo efficacy be determined in a non-human primate model of Ebola. If these results are positive, sofosbuvir's efficacy in humans could be determined by measuring Ebola virus RNA in the semen of males 18–65 years old (n = 40) who were identified as having had a PCR-confirmed Ebola diagnosis in a double-blind, randomized, placebo-controlled trial. A 400-mg dose of sofosbuvir would be administered orally once daily for 28 days to individuals in the test group and a placebo tablet given to the control participants. The presence of Ebola RNA in all samples would be determined using real-time RT-PCR. Samples would be obtained once per week during treatment and once per month thereafter. The presence of infectious Ebola virus in the semen samples would be determined in severe combined immunodeficient mice as previously described (Sissoko et al., 2017). During treatment, all patients would be monitored for potential adverse effects via interviews and by obtaining blood samples. Following the treatment period, samples would be collected once a month for at least 13 months. All collected seminal fluid samples in the trial proposed here would be tested for the presence of Ebola virus RNA, and the clearance rate of the virus over 13 months in the two groups would be compared. If there is a statistically significant increase in viral clearance in the treated group as compared to the placebo control group, the clinical efficacy of sofosbuvir in humans could be determined by identifying individuals 18 years of age or older in a future epidemic who have laboratory-confirmed Ebola infection for a double-blind, randomized, placebo-controlled trial. Recent data suggest that the mortality rate from Ebola is about 50%. Using this conservative estimate, and the modest prediction that sofosbuvir would decrease the mortality rate to 30%, sample sizes of n = 60 each for the control and drug groups would be sufficient to detect a statistically significant effect (p < 0.05). A 400-mg dose of sofosbuvir would be administered orally once daily for 28 days to individuals in the test group and a placebo tablet given to the control participants. The main efficacy endpoint would be survival after 28 days. Also, all placebo and sofosbuvir patients would receive the best available supportive care. Since we do not know whether sofosbuvir will significantly lower the mortality rate, the use of placebo is justified. Finally, patients should be followed to determine their viral load and acquired resistance to sofosbuvir. Clinical studies and post-marketing data suggest that sofosbuvir has a highly favorable safety profile (Keating and Vaidya, 2014). The most common adverse effects produced by sofosbuvir are headache, nausea, dizziness, fatigue and abdominal pain, and no dose-limiting toxicities have been reported (Keating and Vaidya, 2014). Nonetheless, sofosbuvir treatment will be discontinued if it elicits severe or problematic adverse effects or increases mortality. Patients should be screened for HCV as using sofosbuvir alone for the treatment of HCV would not be considered optimal therapy. It is recommended that sofosbuvir should not be taken by women who are breastfeeding. Animal data indicate that sofosbuvir and its predominant circulating metabolite, GS331007, at doses far exceeding those used in HCV patients, does not produce carcinogenicity, mutagenicity, or an impairment of fertility (Product Information, Gilead Sciences, Inc., 2015). A recent in vitro study indicates that sofosbuvir, at high concentrations, does not have toxic effects on the following human cell lines: hepatic (Huh7, HepG2), prostate (PC-3), fibroblasts (MRC5), T cells (MT-4), bone marrow erythroid, and myeloid cells (Feng et al., 2016). Finally, sofosbuvir (>200 μM) does not significantly inhibit (1) the activity of the mitochondrial DNA polymerases alpha, beta, and gamma or (2) mitochondrial protein synthesis and respiration in PC-3 cells (Feng et al., 2016). Clinical data suggest that sofosbuvir's pharmacokinetic profile is highly suitable for the potentially diverse populations of patients presenting with Ebola infection (Kirby et al., 2015). Notably, sofosbuvir has a large volume of distribution (127 l), thereby increasing the likelihood that sufficient concentrations will be present in reservoir areas (e.g., eyes, testes, CNS) that support active Ebola replication. Current guidelines indicate that sofosbuvir can be used in patients with severe liver impairment and mild or moderate [estimated glomerular filtration rate (eGFR) > 30 ml/min] impairment of renal function (Kirby et al., 2015). However, 4 recent studies (Hundemer et al., 2015; Dumortier et al., 2016; Nazario et al., 2016; Singh et al., 2016) in patients with chronic HCV (total of 80 patients) have reported that sofosbuvir (in combination with other anti-HCV drugs) for 12 to 24 weeks was well tolerated at doses of 400 mg/day, 400 mg every other day or 3 times a week in the presence of end stage renal disease or in patients with eGFR < 30 ml/min. Thus, the use of sofosbuvir could be considered in Ebola patients with severe renal impairment in the absence of alternatives and with careful monitoring. The absorption of sofosbuvir could be affected by vomiting or diarrhea and it cannot be given to patients who are unconscious or have the inability to swallow the tablets. These issues could be addressed by i.v. administration, but there is no i.v. formulation for sofosbuvir. Sofosbuvir could be given in a solution of sulfobutylether-beta-cyclodextrin, although the pharmacokinetic profile of this formulation remains to be determined. Alternatively, the sofosbuvir tablet could be disintegrated into water, juice, or milk with spoon stirring and light press and given via a nasoduodenal tube, although the pharmacokinetics of this formulation is unknown (Li and Foisy, 2014). Currently, the efficacy and safety of sofosbuvir for pediatric patients has not been reported. Sofosbuvir and its main metabolite are not known to be substrates for CYP450 drug metabolizing enzymes and do not induce or inhibit these enzymes (Kirby et al., 2015). Sofosbuvir is a substrate for the ABC transporters p-glycoprotein (ABCB1) and breast cancer resistant protein (BRCP or ABCG2 transporter) (Kirby et al., 2015). Overall, sofosbuvir has a low liability to elicit significant drug-drug interactions. Indeed, the number of clinically significant drug-drug interactions are minimal for sofosbuvir (it should not be co-administered with potent inducers of intestinal ABCB1 and/or ABCG2, carbamazepine, oxcarbazepine, phenytoin, phenobarbital tipranivir + ritonavir, rifampin, rifabutin, rifapentine, or amiodarone) (Product Information, Gilead Sciences, Inc., 2015). This is important as Ebola patients may be receiving many drugs as part of their treatment regimen and based on published data, sofosbuvir is highly unlikely to attenuate the efficacy and/or increase the toxicity of numerous other drugs used to treat concomitant infections. The cost of sofosbuvir is a critical issue regarding its use for Ebola. The median nominal ex-factory cost of a 12-week regimen of sofosbuvir for treating HCV, across 26 countries in the Organization for Economic Cooperation and Development (OECD), was $42,017 (Iyengar et al., 2016). This aforementioned price range would make sofosbuvir unavailable as a potential treatment to most patients on a global level. However, the cost of generic sofosbuvir in India, ranges from $161 to 312 for 28 tablets (Iyengar et al., 2016). Thus, a 4-week regimen of sosfobuvir, as proposed in this paper, would be projected to cost $161 to 312. Furthermore, it has been estimated that based upon (1) the manufacturing cost of retroviral drugs with similar mechanisms of action and chemical structures and (2) treating a minimum of 1 million people (Hill et al., 2014), a 12-week regimen of sofosbuvir should cost $68–136, or $23–45 for 4 weeks. In conclusion, we hypothesize that sofosbuvir, a highly safe and effective treatment for HCV, if given in a timely manner, would decrease Ebola-induced mortality by lowering viral load. There is currently no drug that has proven to be efficacious against Ebola virus in a clinical setting, including favipiravir, and the safety profile of sofosbuvir is already well known. If sofosbuvir treatment significantly reduces Ebola mortality, its efficacy should be tested for prophylaxis and for post exposure prophylaxis. Also, its use could be considered in patients diagnosed with post-Ebola syndrome, given that one of the potential causes could be viral reservoirs. Author contributions SR, CA, and AT discussed and agreed on the presented opinion. CA wrote the draft and SR and AT contributed to a portion of the draft. CA, AT, and SR proofed the article. Conflict of interest statement The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Experimental Treatment with Favipiravir for Ebola Virus Disease (the JIKI Trial): A Historically Controlled, Single-Arm Proof-of-Concept Trial in Guinea

          Background Ebola virus disease (EVD) is a highly lethal condition for which no specific treatment has proven efficacy. In September 2014, while the Ebola outbreak was at its peak, the World Health Organization released a short list of drugs suitable for EVD research. Favipiravir, an antiviral developed for the treatment of severe influenza, was one of these. In late 2014, the conditions for starting a randomized Ebola trial were not fulfilled for two reasons. One was the perception that, given the high number of patients presenting simultaneously and the very high mortality rate of the disease, it was ethically unacceptable to allocate patients from within the same family or village to receive or not receive an experimental drug, using a randomization process impossible to understand by very sick patients. The other was that, in the context of rumors and distrust of Ebola treatment centers, using a randomized design at the outset might lead even more patients to refuse to seek care. Therefore, we chose to conduct a multicenter non-randomized trial, in which all patients would receive favipiravir along with standardized care. The objectives of the trial were to test the feasibility and acceptability of an emergency trial in the context of a large Ebola outbreak, and to collect data on the safety and effectiveness of favipiravir in reducing mortality and viral load in patients with EVD. The trial was not aimed at directly informing future guidelines on Ebola treatment but at quickly gathering standardized preliminary data to optimize the design of future studies. Methods and Findings Inclusion criteria were positive Ebola virus reverse transcription PCR (RT-PCR) test, age ≥ 1 y, weight ≥ 10 kg, ability to take oral drugs, and informed consent. All participants received oral favipiravir (day 0: 6,000 mg; day 1 to day 9: 2,400 mg/d). Semi-quantitative Ebola virus RT-PCR (results expressed in “cycle threshold” [Ct]) and biochemistry tests were performed at day 0, day 2, day 4, end of symptoms, day 14, and day 30. Frozen samples were shipped to a reference biosafety level 4 laboratory for RNA viral load measurement using a quantitative reference technique (genome copies/milliliter). Outcomes were mortality, viral load evolution, and adverse events. The analysis was stratified by age and Ct value. A “target value” of mortality was defined a priori for each stratum, to guide the interpretation of interim and final analysis. Between 17 December 2014 and 8 April 2015, 126 patients were included, of whom 111 were analyzed (adults and adolescents, ≥13 y, n = 99; young children, ≤6 y, n = 12). Here we present the results obtained in the 99 adults and adolescents. Of these, 55 had a baseline Ct value ≥ 20 (Group A Ct ≥ 20), and 44 had a baseline Ct value < 20 (Group A Ct < 20). Ct values and RNA viral loads were well correlated, with Ct = 20 corresponding to RNA viral load = 7.7 log10 genome copies/ml. Mortality was 20% (95% CI 11.6%–32.4%) in Group A Ct ≥ 20 and 91% (95% CI 78.8%–91.1%) in Group A Ct < 20. Both mortality 95% CIs included the predefined target value (30% and 85%, respectively). Baseline serum creatinine was ≥110 μmol/l in 48% of patients in Group A Ct ≥ 20 (≥300 μmol/l in 14%) and in 90% of patients in Group A Ct < 20 (≥300 μmol/l in 44%). In Group A Ct ≥ 20, 17% of patients with baseline creatinine ≥110 μmol/l died, versus 97% in Group A Ct < 20. In patients who survived, the mean decrease in viral load was 0.33 log10 copies/ml per day of follow-up. RNA viral load values and mortality were not significantly different between adults starting favipiravir within <72 h of symptoms compared to others. Favipiravir was well tolerated. Conclusions In the context of an outbreak at its peak, with crowded care centers, randomizing patients to receive either standard care or standard care plus an experimental drug was not felt to be appropriate. We did a non-randomized trial. This trial reaches nuanced conclusions. On the one hand, we do not conclude on the efficacy of the drug, and our conclusions on tolerance, although encouraging, are not as firm as they could have been if we had used randomization. On the other hand, we learned about how to quickly set up and run an Ebola trial, in close relationship with the community and non-governmental organizations; we integrated research into care so that it improved care; and we generated knowledge on EVD that is useful to further research. Our data illustrate the frequency of renal dysfunction and the powerful prognostic value of low Ct values. They suggest that drug trials in EVD should systematically stratify analyses by baseline Ct value, as a surrogate of viral load. They also suggest that favipiravir monotherapy merits further study in patients with medium to high viremia, but not in those with very high viremia. Trial registration ClinicalTrials.gov NCT02329054
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            Successful treatment of advanced Ebola virus infection with T-705 (favipiravir) in a small animal model.

            Outbreaks of Ebola hemorrhagic fever in sub-Saharan Africa are associated with case fatality rates of up to 90%. Currently, neither a vaccine nor an effective antiviral treatment is available for use in humans. Here, we evaluated the efficacy of the pyrazinecarboxamide derivative T-705 (favipiravir) against Zaire Ebola virus (EBOV) in vitro and in vivo. T-705 suppressed replication of Zaire EBOV in cell culture by 4log units with an IC90 of 110μM. Mice lacking the type I interferon receptor (IFNAR(-)(/)(-)) were used as in vivo model for Zaire EBOV-induced disease. Initiation of T-705 administration at day 6 post infection induced rapid virus clearance, reduced biochemical parameters of disease severity, and prevented a lethal outcome in 100% of the animals. The findings suggest that T-705 is a candidate for treatment of Ebola hemorrhagic fever. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Minimum Costs for Producing Hepatitis C Direct-Acting Antivirals for Use in Large-Scale Treatment Access Programs in Developing Countries

              Worldwide, 160–180 million people are antibody positive for Hepatitis C, with up to 500 000 HCV-related deaths per year [1, 2]. The vast majority of these patients are left untreated, with treatment rates ranging from 3.5% in Europe to 21% in the United States [3, 4]. In comparison, approximately 35.3 million are infected with human immunodeficiency virus (HIV), with 1.6 million HIV-related deaths per year [5]. The vast majority of these infections and deaths are in resource-limited settings. Due to remarkable progress in reducing costs of treatment, >10 million patients are now on antiretroviral (ARV) regimens in low- and middle-income countries [5]. People with hepatitis C infection can be cured using modern treatment, but at a very high cost. The US launch prices for 12 weeks of treatment with simeprevir and sofosbuvir, 2 newly approved drugs, are $66 000 and $84 000, respectively [6]. In low- and middle-income countries, access to HCV treatment is extremely limited, mainly because of the complexity of patient management and high costs [7]. Of the 20 countries with the largest HCV epidemics, 12 are classified as low or lower-middle income (Table 1). For widespread treatment of HCV in developing countries to become feasible, we will need short-course antiviral treatment available at very low costs and with minimal diagnostic support. Table 1. Hepatitis C Global Prevalence by Country (2010) Country Income Classification Most Prevalent Genotypes Anti-HCVa, % No. Infected China Upper-middle 1, 2, 6 2.2 29 791 212 India Lower-middle 1, 3 1.5 18 216 960 Egypt Lower-middle 4 14 11 826 360 Indonesia Lower-middle 1, 2 3.9 9 436 986 Pakistan Lower-middle 3 5.9 9 422 402 Russia Upper-middle 1, 3 4.1 5 796 498 United States High 1, 2, 3 1.8 5 367 834 Democratic Republic of Congo Low 4 6.4 4 010 240 Nigeria Lower-middle 1, 2 2.1 3 323 439 Japan High 1, 2 2.4 3 058 008 Cameroon Lower-middle 1, 2, 4 13.8 2 754 204 Brazil Upper-middle 1, 3 1.4 2 609 670 Uganda Low 1, 4 6.6 2 230 536 Philippines Lower-middle 1 2.2 1 932 854 Italy High 1, 2 3.2 1 923 136 Ukraine Lower-middle 1 4.0 1 864 840 Uzbekistan Lower-middle 1, 3 6.5 1 774 955 Turkey Upper-middle 1 2.2 1 549 108 Ethiopia Low 1, 2, 4 1.9 1 500 734 Thailand Upper-middle 1, 3, 6 2.2 1 499 058 World's population 2%–3% 160–180 million a Prevalence of antibody to hepatitis C virus (HCV). Sources: Lavanchy [8]; Negro and Alberti [9]. Income classifications from the World Bank, 2013 [43]. Recently, a number of direct-acting antivirals (DAAs) in phase 2 or 3 development have shown sustained virologic response (SVR) rates of up to 100% in noncirrhotic patients and, promisingly, high SVR rates in people with advanced liver disease or previous null response (Table 2). The approval of such drugs will likely see DAA combinations replace interferon-based regimens as the new standard of care [18]. Success of treatment often depends on genotype; although the majority of results are from clinical trials carried out on patients infected with the HCV-1 genotype, encouraging results are emerging for the treatment of both HCV-2 and HCV-3 (Table 2). Table 2. Results From Clinical Trials of Interferon-Free Regimens Combination Study Population Previous Response Genotype Treatment Arm(s) SVR Rate Daclatasvir + sofosbuvir ± RBV AI444–040 [10] Noncirrhotic (n = 170) Naive 1 12 wk (n = 82) 95%–98% (SVR-4) 24 wk (n = 44) 93%–100% (SVR-24) 2/3 24 wk (n = 44) 88%–100% (SVR-24) Daclatasvir + asunaprevir + BMS-791325 AI443-014 [11] Noncirrhotic (n = 32) Naive 1 24 wk (n = 16) 94% (SVR-4) 12 wk (n = 16) 94% (SVR-12) Daclatasvir + asunaprevir AI447-011 [12] (n = 38) Null response 1b Once daily (n = 20) 65% (SVR-12) Twice daily (n = 18) 78% (SVR-12) Sofosbuvir + RBV ± GS-5885 ELECTRON [13] Noncirrhotic (n = 120) Naive 1 12 wk, 3-drug (n = 25) 100% (SVR-12) 12 wk, 2-drug (n = 25) 84% (SVR-12) Null response 12 wk, 3-drug (n = 9) 100% (SVR-12) Naive 2/3 12 wk, 2-drug (n = 11) 100% (SVR-24) 8 wk, 2-drug (n = 25) 64% (SVR-12) Experienced 12 wk, 2-drug (n = 25) 68% (SVR-12) Sofosbuvir + weight-based RBV or low-dose RBV SPARE [14] Noncirrhotic (n = 10); all stages fibrosis (n = 50) Naive 1 24 wk, noncirrhotic, WB (n = 10) 90% (SVR-12) 24 wk, WB (n = 25) 72% (SVR-4) 24 wk, LD (n = 25) 56% (SVR-4) Sofosbuvir + RBV POSITRON [15] (n = 207 + 71 placebo) IFN-ineligible 2 12 wk (n = 109) 93% (SVR-12) 3 12 wk (n = 98) 61% (SVR-12) FUSION [15] (n = 201) Experienced 2 12 wk (n = 36) 86% (SVR-12) 16 wk (n = 32) 94% (SVR-12) 3 12 wk (n = 64) 30% (SVR-12) 16 wk (n = 63) 62% (SVR-12) Sofosbuvir + simeprevir ± RBV COSMOS [16]; noncirrhotic (n = 80) Null response 1 24 wk, 3-drug (n = 24) 67% (SVR-8) 24 wk, 2-drug (n = 15) 100% (SVR-8) 12 wk, 3-drug (n = 27) 96% (SVR-8) 12 wk, 2-drug (n = 14) 93% (SVR-8) Faldaprevir + BI207127 ± RBV SOUND-C2 [17] (n = 329 [33 = F4]) Naive 1 28 wk, 3-drug (n = 316) Up to 69% (SVR-12) 28 wk, 2-drug (n = 46) 39% (SVR-12) Abbreviations: IFN, interferon; LD, low-dose; RBV, ribavirin; SVR-4, undetectable hepatitis C virus RNA 4 weeks after finished treatment; SVR-12, undetectable hepatitis C virus RNA 12 weeks after finished treatment; SVR-24, undetectable hepatitis C virus RNA 24 weeks after finished treatment; WB, weight-based. DAAs for HCV infection have similar mechanisms of action and chemical structures to antiretrovirals currently in use for the treatment of HIV. These drugs are also similarly intended for oral delivery using relatively uncomplicated formulation technologies. Over the last 2 decades, generic competition, increased purchase volumes, and improvements in manufacturing processes (both active pharmaceutical ingredients [APIs] and formulation) have driven the cost of HIV ARV treatment down by >99%, with standard triple therapy now costing as little as US$60 per patient per year [19]. These prices could not have been imagined when triple ARV drug combinations were introduced at more than US$10 000 per patient per year in the late 1990s [7]. Following the important precedent set by access to treatment for HIV infection, the aim of this analysis was to estimate the minimum cost of HCV treatment, assuming the same strategic market dynamics as used to supply ARVs to people with HIV/AIDS in developing countries. METHODS In this analysis, the molecular structures of HCV DAAs were compared with their closest analogues in the treatment of HIV. We evaluated the likely routes of manufacturing as published by the originator companies and assumed a volume demand based on 1–5 million patients per year to arrive at approximate costs of DAA APIs. We then added on a 40% margin for finished production manufacturing (formulation) to arrive at a projected cost of therapy. The purpose of this analysis is to logically speculate whether DAAs can be provided for millions of people at a reasonable cost. The analysis is not meant to be exact or to arrive at a “most likely optimized cost” for any individual or combination DAA therapy. Very little information is presently available to estimate actual commercial formulation costs for DAAs. These DAAs are all delivered orally using conventional technologies. Projected API costs for these DAAs range from US$1400–to US$21 000 per kilogram; as such, the very high relative costs of API would justify a 40% increment as a reasonable add-on for estimating cost of the finished dosage form. The minimum treatment costs of comparator HIV ARVs were calculated using the lowest prices reported by manufacturers to Médecins Sans Frontières in 2012 [19]. Minimum costs per gram of ARVs ranged from US$0.20 to US$0.90 per gram for nucleoside analogues, US$0.50 per gram for nucleotide analogues, and US$0.70–$2.10 per gram for protease inhibitors (Table 3). Table 3. Minimum Costs of HIV Antiretrovirals, by Increasing Cost per Gram Agent Chemical Formula Molecular Weight, g/mol Daily Dose, mg Overall Dose Per Year, g Cost Per Gram, US$ Cost Per Year, US$ Lamivudine C8H11N3O3S 229 300 110 0.19 21 Zidovudine C10H13N504 267 600 219 0.34 75 Tenofovir disoproxil fumarate C23H34N5O14P 636 300 110 0.52 57 Indinavira C36H47N5O4 614 1600 584 0.67 394 Abacavir C14H18N6O 286 600 219 0.77 169 Emtricitabine C8H10FN3O3S 247 200 73 0.79 58 Stavudine C10H12N2O4 224 60 22 0.86 19 Lopinavir/ritonavirb C37H48N4O5 629 800/200 = 1000 365 1.01 368 Darunavira C27H37N3O7S 548 1200 438 1.83 803 Saquinavira C38H50N6O5 671 2000 730 1.87 1366 Atazanavira C38H52N6O7 705 300 110 2.11 231 a Prices of protease inhibitors do not include the cost of the ritonavir booster drug, except for lopinavir/ritonavir. b Chemical formula and molecular weight for lopinavir only. Source: MSF Drug Access Team [19]. Four HCV DAAs were included in this study: daclatasvir (phase 3), sofosbuvir (approved December 2013), faldaprevir (phase 3), and simeprevir (approved November 2013). Ribavirin, already available in generic form, was also included in this analysis due to its likely inclusion in future drug regimens. Using the most likely daily dosage identified from clinical trials, the total drug requirement for each DAA was calculated for a 12-week course of each HCV DAA. To estimate the manufacturing cost of each HCV DAA, current routes of synthesis and critical cost-limiting raw materials were taken from the patent literature. In an alternative comparison, each compound was matched to the closest equivalent HIV ARV based on structural similarity. Production costs per gram of HCV DAA were assumed to be 1–10 times higher than the equivalent HIV ARV, dependent on the complexity of chemical synthesis. Complexity was assessed by identifying the most likely cost-limiting intermediates for the synthesis of each DAA. Additional considerations included ease and number of steps of manufacture and availability and cost of starting materials. Using this estimate for the production cost per gram of drug together with the total drug requirement, an estimate for the minimum cost of a 12-week course of treatment with each HCV DAA was calculated. These costs were used to provide estimates for the production costs of 2- or 3-drug combination therapy based on the combinations currently being investigated in clinical trials (Table 2). RESULTS Based on molecular weight, chemical structure, class, and dose, the HIV ARV most comparable to each HCV DAA were as follows: zidovudine to ribavirin, atazanavir to daclatasvir, tenofovir and stavudine to sofosbuvir, darunavir to faldaprevir, and lopinavir to simeprevir. Table 4 shows the HCV DAA and most comparable HIV ARV as well as the likely cost limiting raw materials in production. A summary of the estimated costs per person for a 12-week course of each HCV DAA is shown in Table 5. Table 4. Hepatitis C Virus Direct-Acting Antiviral Structure and Likely Cost Limiting Raw Material in Production HCV DAA Agent HCV DAA Structure and Retrosynthesis Comparator HIV Agent Ribavirin C8H12N4O5 MW: 244 g/mol Zidovudine C10H13N5O4  MW: 267 g/mol Daclatasvir C40H50N8O6  MW: 739 g/mol Atazanavir C38H52N6O7  MW: 705 g/mol Sofosbuvira  C22H29FN3O9P MW: 529 g/mol TDF C23H34N5O14P MW: 636 g/mol Faldaprevir C40H49BrN6O9S MW: 870 g/mol Darunavir C27H37N3O7S MW: 548 g/mol Simeprevir C38H47N5O7S2  MW: 750 g/mol Lopinavir/r C37H48N4O5  MW: 629 g/mol Abbreviations: API, active pharmaceutical ingredients; DAA, direct-acting antiviral; HCV, hepatitis C virus; HIV, human immunodeficiency virus; MW, molecular weight; TDF, tenofovir. a Sofosbuvir is presumably synthesized as a mixture of diastereomers on phosphorous. Only one of these 2 diastereomers is desired in the active pharmaceutical ingredients. Separation of diastereomers can be a substantial contributor to the cost of API production, particularly when an undesired diastereomer cannot be efficiently recycled. See US patent 7 390 791 and US application 20130065856 for the tenofovir alafenamide fumarate (TAF) prodrug version of tenofovir, which contains a “ProTide” moiety identical to that present in sofosbuvir. Efficient recycling of diastereomers has been demonstrated for TAF, but we do not presume this is the case for sofosbuvir. Table 5. Predicted Minimum Costs of Hepatitis C Virus Direct-Acting Antivirals Agent Daily Dose, mg Overall Dose Per 12 wk, g Estimated Cost per Gram, US$ Predicted Cost, US$ Ribavirin 1000–1200 84–101 0.29–0.41a $34–$48b Daclatasvir 60 5 2–6 $10–$30 Sofosbuvir 400 34 2–4 $68–$136 Faldaprevir 120 10 10–21 $100–$210 Simeprevir 150 13 10–21 $130–$270 a Current range of active pharmaceutical ingredients cost per gram from 3 Chinese suppliers. b Shows cost for 1000 mg daily dose; $41–$58 for 1200-mg daily dose of ribavirin; adjusted with a 40% markup for formulation. Ribavirin With a daily dose of 1000–1200 mg dependent on patient weight, a 12-week course of treatment with ribavirin will require between 84.0 and 100.8 grams of API. This results in a range of demand between 84 and 504 metric tons of API to treat 1–5 million patients. Ribavirin is a nucleoside analogue with a molecular weight of 244 g/mol. Based on this and the chemical formula (Table 3), zidovudine was considered to be the closest equivalent HIV relative of ribavirin (also a nucleoside analogue with molecular weight 267 g/mol). Analysis revealed that ribavirin has a relatively simple chemical synthesis [20]. Using zidovudine alongside knowledge of the current costs of ribavirin, production costs were estimated to lie between US$0.29 and US$0.41 per gram, giving potential costs for a 12-week course of ribavirin of US$34–$48 for the dose of 1000 mg per day, and US$41–$58 for the dose of 1200 mg/day. Daclatasvir At the dose of 60 mg/day, a 12-week course of treatment would require 5.0 grams of daclatasvir API. Daclatasvir is a NS5A inhibitor with a molecular weight of 739 g/mol. Treating 1–5 million patients with daclatasvir would require 5–25 metric tons of API. Daclatasvir was deemed most structurally comparable to atazanavir, a protease inhibitor with a molecular weight of 705 g/mol (Table 3). Daclatasvir has a straightforward synthesis with the cost-limiting intermediate being the substituted biphenyl compound shown (Table 5) [21, 22]. There is wide availability of cheap starting materials to synthesize the side-chains of daclatasvir. The estimated production costs of daclatasvir finished product are between US$2 and US$6 per gram. At a daily dose of 60 mg, the estimated production costs for a 12-week course of treatment were US$10–$30. Sofosbuvir Delivered at a 400 mg daily dose, a 12-week course of treatment with sofosbuvir will require 33.6 grams of API. This results in a range of API demand between 33.6 and 168 metric tons to treat 1–5 million patients. With a molecular weight of 529 g/mol and chemical formula of C22H29FN3O9P, sofosbuvir was considered most structurally comparable to tenofovir, with a molecular weight of 636 g/mol and chemical formula C23H34N5O14P (Table 3). The cost-limiting raw material/intermediate for the synthesis of sofosbuvir API is the 2′-fluoro-2′-methylfuranose intermediate (Table 5) [23–25]. Although a number of approved drugs have similar structures, the presence of both a methyl and a fluoro substituent at the 2′ position makes this intermediate cost-limiting. We have estimated API production costs for sofosbuvir between US$2 and US$4 per gram; sofosbuvir is considered most closely analogous in cost to the HIV drug stavudine, which is relatively expensive in terms of manufacturing costs per gram. An estimated cost for 12 weeks of treatment with sofosbuvir API is US$68–$136. Faldaprevir At a daily dose of 120 mg, 10.1 grams of faldaprevir API will provide a 12-week course of treatment. Treating 1–5 million patients with faldepravir would require 10.1–50.5 metric tons of API. Faldaprevir is a protease inhibitor with a molecular weight of 870 g and chemical formula of C40H49BrN6O9S (Table 3). As a result of this high molecular weight and complicated chemical structure darunavir was deemed the most cost-comparable with faldaprevir. Faldaprevir manufacture requires a tetra-substituted quinoline and a vinyl-cyclopropane amino acid as raw materials for the synthesis of the API (Table 5) [25, 26]. Due to the difficult synthesis, estimated production costs of US$10–$21 per gram were applied. Accordingly, a 12-week course of treatment with faldaprevir could cost between US$100 and US$210. Simeprevir At a daily dose of 150 mg, a course of treatment with simeprevir would require 13 grams of simeprevir API. Treating 1–5 million patients with simeprevir would require 13–65 tons of API. In terms of class, molecular weight and chemical structure, lopinavir/ritonavir was considered the equivalent HIV ARV of simeprevir, although atazanavir was included in comparing cost estimates (Table 3). Simeprevir is a medium-ring macrocycle that utilizes a ring-closing metathesis reaction in the late stages of API manufacturing, which is challenging (Table 5). Novel raw materials entered into the synthesis include a tetra-substituted quinoline and the same vinyl-cyclopropane amino acid as used in the synthesis of faldaprevir [27]. Production costs were estimated at US$10 to US$21 per gram, giving an estimated cost of treatment of US$130–$270 for 12 weeks. Combination Therapies Table 6 shows the estimated prices of combination therapy based on the DAA drug prices calculated in this analysis. Using the minimum costs, a 12-week course of treatment with daclatasvir and sofosbuvir could cost a minimum of US$78 per person. A treatment with sofosbuvir and simeprevir could cost US$198 for 12 weeks with the addition of ribavirin increasing this cost to US$232 per person. For some patients or some regimens, a 24-week treatment might be necessary, doubling treatment costs. Table 6. Potential Regimen Costs Regimen Duration, wk Predicted Cost, US$ Daclatasvir + sofosbuvir 12 $78–$166 Daclatasvir + sofosbuvir + ribavirin 12 $112–$214 Sofosbuvir + ribavirin 12 $102–$184 Sofosbuvir + simeprevir 12 $198–$406 Sofosbuvir + simeprevir + ribavirin 12 $232–$454 DISCUSSION Fifteen years ago, universal access to antiretroviral therapy for HIV/AIDS in developing countries was considered too complex and expensive to be feasible. With the invention of effective, simple therapy, a market was created for generic competition that in turn made treatment affordable, and along with the associated international funding, treatment scale-up became possible [28]. The situation of HCV treatment today is reminiscent of treatment for HIV/AIDS in the year 2000. Our analysis suggests that 2- or 3-drug combinations of interferon-free HCV treatments could cost US$100–$250 for a 12-week course of treatment. These low prices coupled with the high SVR rates established in several trials shows the potential for large-scale, low-cost HCV treatment in developing countries, with the potential to repeat the model of low-cost HIV treatment that has benefited millions of people. This model of treatment is based on simplified, standardized treatment approaches using tolerable, easy-to-administer regimens that are supportive of task shifting (care delivery by lesser trained health staff) and good patient adherence, and could be facilitated by widespread access to oral, short-course DAA therapy in low-income countries [29]. The cost of production of HIV ARVs has fallen progressively over the past decade through increased market competition, increased volumes, and efficiencies in manufacturing processes. The Clinton Health Access Initiative pioneered purchasing from quality-assured generic pharmaceutical manufacturers in India and raw material manufacturers in China to ensure the lowest sustainable costs for some ARVs, lowering prices dramatically [30]. Our estimated unit costs of HCV DAAs per gram are still far higher than the current costs of HIV ARVs, and it could be assumed that the cost of HCV DAAs may further decrease over time through process optimization and the cheaper sourcing of raw materials as volume demand drives competition and process efficiencies. We have been conservative in our estimations vs the history of costs for HIV drug production. API syntheses begin with raw materials of rather simple structure that are combined in a specific and modular fashion to build the more complex structures of drugs. When a commercial market already exists for these raw materials, their contribution to cost is rather modest. When raw materials with no previous commercial demand are used, these can contribute very substantially to cost. Efavirenz, an HIV-1 reverse transcriptase inhibitor, provides an illustration of this. Cyclopropylacetylene (CPA) is a raw material for the synthesis of efavirenz. During human clinical trials, when the demand for CPA was only a few metric tons, CPA cost was US$800–$1350 per kilogram. When the drug was approved (1998) and demand for CPA was about 50 tons per year, the price of CPA had fallen to US$300–$350 per kilogram. Today, with a global demand for efavirenz of >800 tons per year, CPA can be purchased for US$50–$60 per kilogram. Efavirenz was launched in 1998 at an API cost of $1800 per kilogram. The current best cost for the API is about $120 per kilogram from Indian generic suppliers. The DAA molecules in this analysis each contain at least 1 novel raw material that will be expensive in the early phases of commercial introduction. Similar to the reductions in the cost of efavirenz, the estimated costs in this analysis can only be justified if we can guarantee the eventual procurement of large orders. With the DAAs investigated in this study, 12 weeks of treatment for 1 million patients would require between 5 and 34 metric tons of API, with ribavirin requiring between 84 and 101 tons of active ingredient. Treatment for only a fraction of the 185 million people infected with HCV could ensure order sizes in a similar region to HIV ARVs. With the introduction of these new HCV DAAs, the methods used to diagnose and monitor HCV are likely to be greatly simplified [31]. To ensure widespread treatment, the costs of diagnostic and monitoring tests will also need to fall. In the same way that the cost of HIV treatment has decreased, the cost of HIV diagnostics and monitoring has rapidly declined over the last few decades, with commercial HIV RNA tests now costing less than US$2 per test [32]. There are several limitations with this analysis. First, to calculate more precise costs, more detailed analysis of the API and formulation processes for production will be necessary. Very little specific information is currently available about formulations of the DAAs. However, all of the DAAs are for oral delivery and—to the best available knowledge—use relatively common drug release technologies. This is in parallel with the formulation of ARVs. Given this, we applied a 40% conversion cost of API to finished product, noting that this figure is not exceeded for any of the large-scale ARV combinations being marketed. Secondly, access to the HCV DAAs at minimum prices in developing countries will strongly depend on the level of enforcement of patent restrictions. These price estimates are based on the previous experience with production of ARVs for HIV treatment, which assumes market competition through generic manufacture. Legal mechanisms such as voluntary or compulsory licenses may be needed to overcome patent barriers and stimulate such competition. Patents for daclatasvir [33], sofosbuvir [34], faldaprevir [35, 36], and simeprevir will remain in force until at least 2025 [37], after which time it should be possible to produce generic versions at much lower cost, provided no additional patents are granted for modifications such as route of synthesis, crystalline structures, or methods of use. Such “evergreen” patenting has happened repeatedly in HIV drug development and could further delay the introduction of generic DAAs [19, 38]. In the near future, there need to be negotiations with the patent holders on voluntary licensing, access prices for low- and middle-income countries, and mass production of low-cost DAAs. Unless these DAAs are widely introduced, current death rates from HCV of 500 000 people per year will continue for many years to come. Finally, our analysis is limited to HCV DAAs that have been mainly evaluated in genotype 1 HCV. Although sofosbuvir has recently been approved in combination with ribavirin for the treatment of genotypes 2 and 3, further research needs to be conducted to ensure pan-genotypic coverage of HCV. The high cost of drugs is often justified by the need to recover costs of research and development. In the case of ARVs for HIV, many of these costs were assumed by the public sector, where parts of the drug discovery and development occurred [39]. Several mechanisms have been used by originator companies to allow access to ARVs in low-income settings. These include differential pricing (charging more in high-income countries) and voluntary licensing (allowing third-party generic manufacture). Similar mechanisms could be employed for HCV DAAs to ensure these drugs are affordable, while also providing a financial return on the costs of research and development [40]. Commitments by national governments to scale up ARV therapy, with support from international donors, were also critical to leveraging prices by increasing the size and predictability of the HIV market. This will be an essential factor in lowering drug prices and increasing access to HCV DAAs [41]. Expanding access through greater affordability will also confer indirect benefits. Currently, a large proportion of untreated patients continue to spread the HCV pandemic worldwide. Lessons learned from HIV suggests that with the introduction of strong community programs for testing, and high rates of treatment coverage and retention, expanded access to treatment is also likely to have a pronounced effect on HCV transmission, a benefit already suggested in modeling studies [42]. Widespread access to HCV DAAs will also require fast regulatory approvals of new drugs, political will, establishment of national viral hepatitis programs, early access programs to start treating people who are most at risk, and accepted international HCV treatment guidelines. In conclusion, widespread access to combinations of HCV DAAs is feasible, with potential target prices of US$100–$250 per person for a 12-week treatment course. Progressive reductions in these costs are likely through optimization of chemical synthesis and cheaper sourcing of raw materials. These low prices could make widespread access to HCV treatment in low- and middle-income countries a realistic goal, with substantial individual and public health benefits.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pharmacol
                Front Pharmacol
                Front. Pharmacol.
                Frontiers in Pharmacology
                Frontiers Media S.A.
                1663-9812
                10 October 2018
                2018
                : 9
                : 1139
                Affiliations
                [1] 1Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University , Queens, NY, United States
                [2] 2Departments of Pathology and Obstetrics and Gynecology and Women's Health, Montefiore Medical Center/Albert Einstein College of Medicine , Bronx, NY, United States
                [3] 3Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo , Toledo, OH, United States
                Author notes

                Edited by: Salvatore Salomone, Università degli Studi di Catania, Italy

                Reviewed by: Takashi Irie, Hiroshima University, Japan

                *Correspondence: Charles R. Ashby Jr. cnsratdoc@ 123456optonline.net.

                This article was submitted to Experimental Pharmacology and Drug Discovery, a section of the journal Frontiers in Pharmacology

                Article
                10.3389/fphar.2018.01139
                6192451
                39580f7e-b303-4e29-abe7-21735f369400
                Copyright © 2018 Reznik, Tiwari and Ashby.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 18 June 2018
                : 19 September 2018
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 29, Pages: 4, Words: 3374
                Funding
                Funded by: University of Toledo 10.13039/100012569
                Categories
                Pharmacology
                Opinion

                Pharmacology & Pharmaceutical medicine
                ebola,sofosbuvir,rna virus,rna dependent rna polymerase,triphosphate metabolite

                Comments

                Comment on this article