1
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Deep-LSTM ensemble framework to forecast Covid-19: an insight to the global pandemic

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The pandemic of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is spreading all over the world. Medical health care systems are in urgent need to diagnose this pandemic with the support of new emerging technologies like artificial intelligence (AI), internet of things (IoT) and Big Data System. In this dichotomy study, we divide our research in two ways— firstly, the review of literature is carried out on databases of Elsevier, Google Scholar, Scopus, PubMed and Wiley Online using keywords Coronavirus, Covid-19, artificial intelligence on Covid-19, Coronavirus 2019 and collected the latest information about Covid-19. Possible applications are identified from the same to enhance the future research. We have found various databases, websites and dashboards working on real time extraction of Covid-19 data. This will be conducive for future research to easily locate the available information. Secondly, we designed a nested ensemble model using deep learning methods based on long short term memory (LSTM). Proposed Deep-LSTM ensemble model is evaluated on intensive care Covid-19 confirmed and death cases of India with different classification metrics such as accuracy, precision, recall, f-measure and mean absolute percentage error. Medical healthcare facilities are boosted with the intervention of AI as it can mimic human intelligence. Contactless treatment is possible only with the help of AI assisted automated health care systems. Furthermore, remote location self treatment is one of the key benefits provided by AI based systems.

          Related collections

          Most cited references 31

          • Record: found
          • Abstract: found
          • Article: not found

          An interactive web-based dashboard to track COVID-19 in real time

          In December, 2019, a local outbreak of pneumonia of initially unknown cause was detected in Wuhan (Hubei, China), and was quickly determined to be caused by a novel coronavirus, 1 namely severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The outbreak has since spread to every province of mainland China as well as 27 other countries and regions, with more than 70 000 confirmed cases as of Feb 17, 2020. 2 In response to this ongoing public health emergency, we developed an online interactive dashboard, hosted by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University, Baltimore, MD, USA, to visualise and track reported cases of coronavirus disease 2019 (COVID-19) in real time. The dashboard, first shared publicly on Jan 22, illustrates the location and number of confirmed COVID-19 cases, deaths, and recoveries for all affected countries. It was developed to provide researchers, public health authorities, and the general public with a user-friendly tool to track the outbreak as it unfolds. All data collected and displayed are made freely available, initially through Google Sheets and now through a GitHub repository, along with the feature layers of the dashboard, which are now included in the Esri Living Atlas. The dashboard reports cases at the province level in China; at the city level in the USA, Australia, and Canada; and at the country level otherwise. During Jan 22–31, all data collection and processing were done manually, and updates were typically done twice a day, morning and night (US Eastern Time). As the outbreak evolved, the manual reporting process became unsustainable; therefore, on Feb 1, we adopted a semi-automated living data stream strategy. Our primary data source is DXY, an online platform run by members of the Chinese medical community, which aggregates local media and government reports to provide cumulative totals of COVID-19 cases in near real time at the province level in China and at the country level otherwise. Every 15 min, the cumulative case counts are updated from DXY for all provinces in China and for other affected countries and regions. For countries and regions outside mainland China (including Hong Kong, Macau, and Taiwan), we found DXY cumulative case counts to frequently lag behind other sources; we therefore manually update these case numbers throughout the day when new cases are identified. To identify new cases, we monitor various Twitter feeds, online news services, and direct communication sent through the dashboard. Before manually updating the dashboard, we confirm the case numbers with regional and local health departments, including the respective centres for disease control and prevention (CDC) of China, Taiwan, and Europe, the Hong Kong Department of Health, the Macau Government, and WHO, as well as city-level and state-level health authorities. For city-level case reports in the USA, Australia, and Canada, which we began reporting on Feb 1, we rely on the US CDC, the government of Canada, the Australian Government Department of Health, and various state or territory health authorities. All manual updates (for countries and regions outside mainland China) are coordinated by a team at Johns Hopkins University. The case data reported on the dashboard aligns with the daily Chinese CDC 3 and WHO situation reports 2 for within and outside of mainland China, respectively (figure ). Furthermore, the dashboard is particularly effective at capturing the timing of the first reported case of COVID-19 in new countries or regions (appendix). With the exception of Australia, Hong Kong, and Italy, the CSSE at Johns Hopkins University has reported newly infected countries ahead of WHO, with Hong Kong and Italy reported within hours of the corresponding WHO situation report. Figure Comparison of COVID-19 case reporting from different sources Daily cumulative case numbers (starting Jan 22, 2020) reported by the Johns Hopkins University Center for Systems Science and Engineering (CSSE), WHO situation reports, and the Chinese Center for Disease Control and Prevention (Chinese CDC) for within (A) and outside (B) mainland China. Given the popularity and impact of the dashboard to date, we plan to continue hosting and managing the tool throughout the entirety of the COVID-19 outbreak and to build out its capabilities to establish a standing tool to monitor and report on future outbreaks. We believe our efforts are crucial to help inform modelling efforts and control measures during the earliest stages of the outbreak.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A Review of Coronavirus Disease-2019 (COVID-19)

             Tanu Singhal (2020)
            There is a new public health crises threatening the world with the emergence and spread of 2019 novel coronavirus (2019-nCoV) or the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The virus originated in bats and was transmitted to humans through yet unknown intermediary animals in Wuhan, Hubei province, China in December 2019. There have been around 96,000 reported cases of coronavirus disease 2019 (COVID-2019) and 3300 reported deaths to date (05/03/2020). The disease is transmitted by inhalation or contact with infected droplets and the incubation period ranges from 2 to 14 d. The symptoms are usually fever, cough, sore throat, breathlessness, fatigue, malaise among others. The disease is mild in most people; in some (usually the elderly and those with comorbidities), it may progress to pneumonia, acute respiratory distress syndrome (ARDS) and multi organ dysfunction. Many people are asymptomatic. The case fatality rate is estimated to range from 2 to 3%. Diagnosis is by demonstration of the virus in respiratory secretions by special molecular tests. Common laboratory findings include normal/ low white cell counts with elevated C-reactive protein (CRP). The computerized tomographic chest scan is usually abnormal even in those with no symptoms or mild disease. Treatment is essentially supportive; role of antiviral agents is yet to be established. Prevention entails home isolation of suspected cases and those with mild illnesses and strict infection control measures at hospitals that include contact and droplet precautions. The virus spreads faster than its two ancestors the SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV), but has lower fatality. The global impact of this new epidemic is yet uncertain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Artificial Intelligence Distinguishes COVID-19 from Community Acquired Pneumonia on Chest CT

               Lin Li,  Lixin Qin,  Zeguo Xu (2020)
              Background Coronavirus disease has widely spread all over the world since the beginning of 2020. It is desirable to develop automatic and accurate detection of COVID-19 using chest CT. Purpose To develop a fully automatic framework to detect COVID-19 using chest CT and evaluate its performances. Materials and Methods In this retrospective and multi-center study, a deep learning model, COVID-19 detection neural network (COVNet), was developed to extract visual features from volumetric chest CT exams for the detection of COVID-19. Community acquired pneumonia (CAP) and other non-pneumonia CT exams were included to test the robustness of the model. The datasets were collected from 6 hospitals between August 2016 and February 2020. Diagnostic performance was assessed by the area under the receiver operating characteristic curve (AUC), sensitivity and specificity. Results The collected dataset consisted of 4356 chest CT exams from 3,322 patients. The average age is 49±15 years and there were slightly more male patients than female (1838 vs 1484; p-value=0.29). The per-exam sensitivity and specificity for detecting COVID-19 in the independent test set was 114 of 127 (90% [95% CI: 83%, 94%]) and 294 of 307 (96% [95% CI: 93%, 98%]), respectively, with an AUC of 0.96 (p-value<0.001). The per-exam sensitivity and specificity for detecting CAP in the independent test set was 87% (152 of 175) and 92% (239 of 259), respectively, with an AUC of 0.95 (95% CI: 0.93, 0.97). Conclusions A deep learning model can accurately detect COVID-19 and differentiate it from community acquired pneumonia and other lung diseases.
                Bookmark

                Author and article information

                Contributors
                sourabhshastri@gmail.com
                kuljeetshan94@gmail.com
                skh.sachinkumar@gmail.com
                param.kour.94@gmail.com
                vibhakar20@yahoo.co.in
                Journal
                Int J Inf Technol
                Int J Inf Technol
                International Journal of Information Technology
                Springer Singapore (Singapore )
                2511-2104
                2511-2112
                3 January 2021
                : 1-11
                Affiliations
                GRID grid.412986.0, ISNI 0000 0001 0705 4560, Department of Computer Science and IT, , University of Jammu, ; Jammu, Jammu and Kashmir 180006 India
                Article
                571
                10.1007/s41870-020-00571-0
                7779101
                © Bharati Vidyapeeth's Institute of Computer Applications and Management 2021

                This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

                Categories
                Original Research

                Comments

                Comment on this article